Math, asked by SuyogPuma, 1 month ago

If the 7th term of an ap is 1/15 and the 12th term is 1/25,find the 20th term?
WITH FULL EXPLINATION?

Answers

Answered by ripinpeace
7

 a  {\tiny{20}}  =  \large  \frac{ - 1}{375}

Step-by-step explanation:

Given -

  • 7th term of an A.P is 1/15.
  • 12th term of the A.P IS 1/25.

To find -

  • The 20th term of the A.P .

Solution -

 \large a \tiny{7} =   \large\frac{1}{15}

 \mapsto a + 6d =   \large\frac{1}{15}  \:  \:  \:  \:  \:  \:  \: \:  \:  \:   \: (i)

 \large a \tiny{12} =   \large\frac{1}{25}

 \mapsto a + 11d =   \large\frac{1}{25}  \:  \:  \:  \:  \:  \:  \: \:  \:   (ii)

(i) - (ii),

 a + 6d   \: - (a + 11d)=   \large\frac{1}{15}  -  \frac{1}{25}

 \mapsto  \cancel{a} + 6d   \:  \cancel{- a}  -  11d=   \large\frac{1 \times 5 - 1 \times 3}{75}

\mapsto   -  5d=   \large\frac{5 - 3}{75}

\mapsto   -  5d=   \large\frac{2}{75}

\mapsto   d=   \large\frac{2}{75 \times ( - 5)}

\mapsto   d=   \large\frac{2}{ - 375}

\mapsto   d=   \large\frac{ - 2}{ 375}   \:  \:  \:  \:  \:  \:  \:  \:  \:   \normalsize(putting \:  \: in \: (i))

 \mapsto a + 6( \frac{ - 2}{375})  =   \large\frac{1}{15}

\mapsto a   - \frac{ 12}{375} =   \large\frac{1}{15}

\mapsto   a =  \large \frac{1}{15}  +  \frac{12}{375}

\mapsto   a =  \large \frac{1 \times 375 + 12 \times 15}{15 \times 375}

\mapsto   a =  \large \frac{375 + 180}{15 \times 375}

\mapsto   a =  \large \frac{ \cancel{555}}{ \cancel{15} \times 375}

\mapsto   a =  \large \frac{ 37}{ 375}

Now, \:  a  {\tiny{20}}  = a  \: + 19d

 \mapsto  a  {\tiny{20}}  =  \large  \frac{37}{375}   \: +  \small{19}  \large\frac{ - 2}{375}

 \mapsto  a  {\tiny{20}}  =  \large  \frac{37}{375}   \: +   \large\frac{ 19 \times ( - 2)}{375}

 \mapsto  a  {\tiny{20}}  =  \large  \frac{37}{375}   \: +   \large\frac{ - 38}{375}

 \mapsto  a  {\tiny{20}}  =  \large  \frac{ - 1}{375}

Answered by Anonymous
70

 a  {\tiny{20}}  =  \large  \frac{ - 1}{375}

Step-by-step explanation:

a20 = -1/375

Similar questions