Math, asked by sbhoomi276, 1 month ago

If the 8th term of an A.P. is 37 and the 15th term is 15 more than the 12th term, find the A.P.
Also, find the sum of first 20 terms of this A.P.

































































Answers

Answered by gyaneshwarsingh882
0

e

S15= 15/2 ( 2* 2 + 14 * 5)

= 15/2 ( 4 + 70)

= 15/2 * 74

=15 * 37

=555

Answered by Anonymous
35

\sf \green{Given :-}

\sf 8th \:term \:of \:A.P is\:37

\sf 15th\: term \: is \: 15 \: more\: than 12th\: term

\sf \green{To\: find:-}

\sf A.P \:series \: and \: sum\: of \: 20\: terms

\sf \green{Formulae\: used:-}

\sf\purple{ a_n = a+(n-1) d}

\sf\purple{ s_n = \dfrac{n}{2} [ 2a+(n-1)d]}

\sf \green{SOLUTION :-}

\sf As\: they\: given \: 8th\: term\: is 37 \\

\sf So, \\

\sf a_n = a+(n-1) d

\sf n=8

\sf a_8 = a+(8-1) d \\

\sf {a_8 = a+7d}

\sf \purple{37 = a+7d } --- eq1

\sf Also,\: they\: given

\sf 15th\: term \: is \: 15 \: more\: than 12th\: term

\sf \purple{a_{15} = 15+a_{12}}

\sf a_{15} = a+(15-1) d

\sf \purple{a_{15} = a+14d }

\sf a_{12} = a+(12-1)d

\sf\purple{ a_{12} = a+11d}

\sf\purple{ a_{15} = 15+a_{12}}

\sf a+14d = 15+a+11d

\sf \not a+14d = 15+\not a+11d

\sf 14d = 15+11d

\sf 14d-11d =15

\sf 3d =15

\sf d= 15/3

\sf \purple{d=5}

\sf As \: we\: got\:" d" value\: substitute\: this\: value\: in \: eq1

\sf {37 = a+7(5) }

\sf {37 = a+35}

\sf 37-35 =a

\sf\purple {a= 2}

\sf Now\: we\: have \: "a" and\: "d" \: From\: this \: we\: can \: find \: the \: series \: of A.P

\sf a = first\: term

\sf d= common\: difference

\sf The\: series\: of\:  A.P \: is

\sf\purple{ a, a+d , a+2d , a+3d . . . .}

\sf Substituting\: the\: values,

\sf 2, (2+5) ,[2+2(5)] , [2+3(5)] . . .

\sf 2, (7) ,(2+10) , (2+15). . .

\sf 2, 7,12 , 17. . .

\sf \purple{So,\:the \: series\: of \: A.P \:are\: 2,7, 12,17}

\sf Now, \: finding\: the\: sum \: of\: terms \\

\sf s_n = \dfrac{n}{2} [ 2a+(n-1)d]

\sf n= no. of\: terms \\ \sf a= first\: term \\ \sf d = common \: difference

\sf Here,

\sf n= 20 \\ \sf a= 2 \\ \sf d =5

\sf Substituting\: the\: values,

\sf s_{20}= \dfrac{20}{2} [ 2(2)+(20-1)5]

\sf s_{20}= 10 [ 4+(19)5]

\sf s_{20}= 10 [ 4+95]

\sf s_{20}= 10 (99)

\sf s_{20} = 990

\sf\purple{So, \: sum\: of\: 20\: terms\: in\: A.P\: is\: 990}

----------------------------------

\sf \green{Final\: answers :-}

\sf \purple{\:The \: series\: of \: A.P \:are\: 2,7, 12,17}

\sf\purple{The  \: sum\: of\: 20\: terms\: in\: A.P\: is\: 990}

Similar questions