Math, asked by sanju23289, 11 months ago

If the 8th term of an A.P. is zero, then show that 28th term is double the 18th term.

Answers

Answered by Tomboyish44
34

Given:

  • a₈ = 0

To Prove:

  • a₂₈ = 2a₁₈

Solution:

We know that a term of an AP can be expressed as:

a + (n - 1)d = an ; Where an is the position of the term.

⇒ a₈ = 0

⇒ a + (8 - 1)d = 0

⇒ a + 7d = 0

a = - 7d

We have to show that;

⇒ a₂₈ = 2a₁₈

⇒ a + 27d = 2[a + 17d]

⇒ -7d + 27d = 2[-7d + 17d]

⇒ 20d = 2[10d]

⇒ 20d = 20d

⇒ LHS = RHS

Hence, proved.

Answered by BrainlyPopularman
33

GIVEN :

8th term of A.P. = 0

TO PROVE :

• 28th term is double the 18th term.

SOLUTION :

• nth term of A.P. , If first term = a and Common difference = d is –

  \\ \dashrightarrow \large { \boxed { \bold{T_{n} = a + (n - 1)d}}} \\

• According to the question –

  \\ \implies { \bold{T_{8} = 0}} \\

  \\ \implies { \bold{a + (8 - 1)d = 0}} \\

  \\ \implies { \bold{a + 7d = 0}} \\

  \\ \implies { \bold{a  =  - 7d  \:  \:  \:  \:  -  -  - eq.(1)}} \\

• Now –

  \\ \implies{ \bold{T_{18} = a + (18 - 1)d}} \\

  \\ \implies{ \bold{T_{18} = a + 17d}} \\

• And –

  \\ \implies{ \bold{T_{28} = a + (28 - 1)d}} \\

  \\ \implies{ \bold{T_{18} =a + 27d}} \\

• We have to prove –

  \\  \:  \: \blacktriangleright \:  \: { \bold{T_{28} =2T_{18}}} \\

• Let's take L.H.S. –

  \\ \implies  { \bold{T_{28} =a + 27d}} \\

• Using eq.(1) –

  \\ \implies  { \bold{T_{28} = - 7d+ 27d}} \\

  \\ \implies  { \bold{T_{28} =  20d \:  \:  \:  \:  \:  -  -  - eq.(2)}} \\

• Let's take R.H.S. –

  \\ \implies  { \bold{2T_{18} = 2 \{a + 17d \}}} \\

  \\ \implies  { \bold{2T_{18} = 2 a + 34d}} \\

• Using eq.(1) –

  \\ \implies  { \bold{2T_{18} = 2( - 7d) + 34d}} \\

  \\ \implies  { \bold{2T_{18} =  - 14d + 34d}} \\

  \\ \implies  { \bold{2T_{18} = 20d \:  \:  \:  \:  -  -  - eq.(3)}} \\

• By eq.(2) & eq.(3) –

  \\ \dashrightarrow   \:  \: { \bold{L.H.S. = R.H.S.}} \\

  \\ \:  \:  \dashrightarrow  \:  \: \:  \: { \underbrace{ \bold{Hence \:  \: proved}}} \\

Similar questions