Math, asked by sanju23289, 9 months ago

If the 8th term of an A.P. is zero, then show that 28th term is double the 18th term.

Answers

Answered by Tomboyish44
34

Given:

  • a₈ = 0

To Prove:

  • a₂₈ = 2a₁₈

Solution:

We know that a term of an AP can be expressed as:

a + (n - 1)d = an ; Where an is the position of the term.

⇒ a₈ = 0

⇒ a + (8 - 1)d = 0

⇒ a + 7d = 0

a = - 7d

We have to show that;

⇒ a₂₈ = 2a₁₈

⇒ a + 27d = 2[a + 17d]

⇒ -7d + 27d = 2[-7d + 17d]

⇒ 20d = 2[10d]

⇒ 20d = 20d

⇒ LHS = RHS

Hence, proved.

Answered by BrainlyPopularman
33

GIVEN :

8th term of A.P. = 0

TO PROVE :

• 28th term is double the 18th term.

SOLUTION :

• nth term of A.P. , If first term = a and Common difference = d is –

  \\ \dashrightarrow \large { \boxed { \bold{T_{n} = a + (n - 1)d}}} \\

• According to the question –

  \\ \implies { \bold{T_{8} = 0}} \\

  \\ \implies { \bold{a + (8 - 1)d = 0}} \\

  \\ \implies { \bold{a + 7d = 0}} \\

  \\ \implies { \bold{a  =  - 7d  \:  \:  \:  \:  -  -  - eq.(1)}} \\

• Now –

  \\ \implies{ \bold{T_{18} = a + (18 - 1)d}} \\

  \\ \implies{ \bold{T_{18} = a + 17d}} \\

• And –

  \\ \implies{ \bold{T_{28} = a + (28 - 1)d}} \\

  \\ \implies{ \bold{T_{18} =a + 27d}} \\

• We have to prove –

  \\  \:  \: \blacktriangleright \:  \: { \bold{T_{28} =2T_{18}}} \\

• Let's take L.H.S. –

  \\ \implies  { \bold{T_{28} =a + 27d}} \\

• Using eq.(1) –

  \\ \implies  { \bold{T_{28} = - 7d+ 27d}} \\

  \\ \implies  { \bold{T_{28} =  20d \:  \:  \:  \:  \:  -  -  - eq.(2)}} \\

• Let's take R.H.S. –

  \\ \implies  { \bold{2T_{18} = 2 \{a + 17d \}}} \\

  \\ \implies  { \bold{2T_{18} = 2 a + 34d}} \\

• Using eq.(1) –

  \\ \implies  { \bold{2T_{18} = 2( - 7d) + 34d}} \\

  \\ \implies  { \bold{2T_{18} =  - 14d + 34d}} \\

  \\ \implies  { \bold{2T_{18} = 20d \:  \:  \:  \:  -  -  - eq.(3)}} \\

• By eq.(2) & eq.(3) –

  \\ \dashrightarrow   \:  \: { \bold{L.H.S. = R.H.S.}} \\

  \\ \:  \:  \dashrightarrow  \:  \: \:  \: { \underbrace{ \bold{Hence \:  \: proved}}} \\

Similar questions