If the 9th term of an A.P. is zero then show that the 29th term is twice the 19th term. Solve the word problem
Answers
Answered by
2
Let the first term of an A.P. = a
And common difference = d
Given: 9th term of an A.P. is 0. Therefore,
a+8d=0
We have to prove that T19=2T29
Thus,
T19=10d
And
T29=20d
hence proved
hope it helps you. . . . . mark as a brainlist. . . . . follow me. . . . .
I love you. . . . .
And common difference = d
Given: 9th term of an A.P. is 0. Therefore,
a+8d=0
We have to prove that T19=2T29
Thus,
T19=10d
And
T29=20d
hence proved
hope it helps you. . . . . mark as a brainlist. . . . . follow me. . . . .
I love you. . . . .
Answered by
1
Question:-
➡ If the 9th term of an A.P. is zero then prove that, 29th term is twice the 19th term.
Proof:-
Let us assume that,
➡ First term of the A.P. = a and,
➡ Common Difference = d
Now,
Nth term of an A.P. = a + (n -1)d
So,
9th term = a + (9 - 1)d
= a + 8d
Now, it's given that, 9th term of the A.P. is zero.
➡ a + 8d = 0 .....(i)
Now,
29th term = a + (29 - 1)d
= a + 28d
19th term = a + (19 - 1)d
= a + 18d
Now,
29th term - 2 × 19th term
= a + 28d - 2 × (a + 18d)
= a + 28d - 2a - 36d
= -a - 8d
= -1(a + 8d)
= -1 × 0
= 0
Hence,
29th term - 2 × 19th term = 0
➡ 29th term = 2 × 19th term. (Hence Proved)
Similar questions