Math, asked by suman9864113431, 11 hours ago

If the A.M between two number a and b is 4 times their geometric mean.Prove that the ratio between the number can be written as
a:b=4+15 : 4-15​

Answers

Answered by idk781tbh
1

Answer:

Step-by-step explanation:

Arithmetic mean of two numbers A and B is (A+B)/2

Geometric mean is \sqrt{AB} .

as arithmetic mean is 4 times the geometric mean , we can say

      (A+B)/2 = 4×( \sqrt{AB} )

=>   A+B = 8 ×  \sqrt{AB} .

squaring on both sides;

=> (A+B)^{2} = 64AB                                                         -  1.

=>   A^{2} + B^{2} + 2AB = 64AB

=>   A^{2} + B^{2} = 62AB

=>   A^{2} + B^{2} - 2AB = 60AB

=>    (A-B)^{2} = 60AB                                                       - 2.

Divide 1 by 2

(A+B)/(A-B) = \sqrt{64/60}

\sqrt{15} × (A+B) = 4 × (A-B)

A(4 - \sqrt{15}) = B(4 + \sqrt{15})

so A:B = (4+\sqrt{15}) / (4 - \sqrt{15}).

Similar questions