Math, asked by ishandiptagarai, 1 month ago

If (the above equation) then prove that x:a=y:b=z:c​

Attachments:

Answers

Answered by mathdude500
2

Given :-

\rm\  \:If  \:  \:  \:  \:   \dfrac{ay - bx}{c}  = \dfrac{cx - az}{b}  = \dfrac{bz - cy}{a}

To Prove

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \:\dfrac{x}{a}  = \dfrac{y}{b}  = \dfrac{z}{c}

\large\underline{\sf{Solution-}}

Basic Concept Used :-

Addendo Property of Proportions :-

\sf \: Let \:  \:   \: \dfrac{a}{b}  = \dfrac{c}{d}  = \dfrac{e}{f}   \:  \: \: then \:

\rm :\longmapsto\: \: \dfrac{a}{b}  = \dfrac{c}{d}  = \dfrac{e}{f}  \: =  \: \dfrac{a + c + e}{b + d + f}

Let's solve the problem now!!

Given that

\rm\dfrac{ay - bx}{c}  = \dfrac{cx - az}{b}  = \dfrac{bz - cy}{a}

can be rewritten as

\rm\dfrac{acy - bxc}{ {c}^{2} }  = \dfrac{cbx - abz}{ {b}^{2} }  = \dfrac{abz - acy}{ {a}^{2} }

and

Now,

By using Addendo Property, we have

\rm\dfrac{acy - bxc}{ {c}^{2} }  = \dfrac{cbx - abz}{ {b}^{2} }  = \dfrac{abz - acy}{ {a}^{2}}  \\  \rm \:  =  \: \dfrac{ \cancel{acy} - \cancel{bxc} + \cancel{cbx} - \cancel{abz} + \cancel{abz} - \cancel{acy}}{ {a}^{2} +  {b}^{2} +  {c}^{2}}

\rm\dfrac{acy - bxc}{ {c}^{2}}=\dfrac{cbx - abz}{{b}^{2}}=\dfrac{abz - acy}{{a}^{2}}=\dfrac{0}{{a}^{2}+{b}^{2}+{c}^{2}}

\rm\dfrac{acy - bxc}{ {c}^{2}}=\dfrac{cbx - abz}{{b}^{2}}=\dfrac{abz - acy}{{a}^{2}}=0

\rm :\implies\:\rm\dfrac{ay - bx}{c}  = \dfrac{cx - az}{b}  = \dfrac{bz - cy}{a}  = 0

\rm :\implies\:ay - bx = 0 \: and \: cx - az = 0 \: and \: bz - cy = 0

\rm :\implies\:ay  =  bx \: and \: cx  = az\: and \: bz = cy

\rm :\implies\:\dfrac{x}{a}  = \dfrac{y}{b}  \: and \: \dfrac{x}{a}  = \dfrac{z}{c}  \: and \: \dfrac{y}{b}  = \dfrac{z}{c}

\bf\implies \:\dfrac{x}{a}  = \dfrac{y}{b}  = \dfrac{z}{c}

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

Properties of Proportions :-

\sf \: If  \:  \: \dfrac{a}{b}  = \dfrac{c}{d}  \:  \:  \: then

\sf \:\:  \: \dfrac{a}{c}  = \dfrac{b}{d}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{alternendo \: property \}

\sf \:\:  \: \dfrac{b}{a}  = \dfrac{d}{c}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{invertendo \: property \}

\sf \:\:  \: \dfrac{a + b}{b}  = \dfrac{c + d}{d}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{componendo \: property \}

\sf \:\:  \: \dfrac{a  -  b}{b}  = \dfrac{c  -  d}{d}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \{dividendo \: property \}

\sf \:\:  \: \dfrac{a}{b}  = \dfrac{c}{d} =  \dfrac{a + c}{b + a}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \{addendo \: property \}

Similar questions