Physics, asked by goldi34, 1 year ago

if the absolute refractive index of glass is 1.5 and that of water is 4/3 find the refractive index of water with respect to glass

Answers

Answered by Cubingwitsk
30

\bold{\boxed{Refractive\:index\:of\:water\:with\:respect\:to\:air}} = \bold{\frac{4}{3}} (Given)

\bold{\boxed{Refractive\:index\:of\:glass\:with\:respect\:to\:air}} = \bold{\frac{3}{2}} (Given) (1.5 = \bold{\frac{3}{2}})

\bold{\boxed{Refractive\:index\:of\:air\:with\:respect\:to\:water}} = \bold{\boxed{\frac{1}{(Refractive\:index\:of\:water\:with\:respect\:to\:air)}}} = \bold{\frac{1}{\frac{4}{3}}} = \bold{\frac{3}{4}}

\bold{\boxed{Refractive\:index\:of\:glass\:with\:respect\:to\:water}} = (Refractive index of glass with respect to air) × (refractive index of air with respect to water)  = \bold{\frac{3}{2}\times\frac{3}{4}\:=\:\frac{9}{8}}

\bold{\boxed{Refractive\:index\:of\:water\:with\:respect\:to\:glass}} = \bold{\frac{1}{(Refractive\:index\:of\:glass\:with\:respect\:to\:water)}} =  \bold{\frac{1}{\frac{9}{8}}} = \bold{\frac{8}{9}}

∴ Final required answer = \bold{\frac{8}{9}}

Thanks!


Cubingwitsk: Hope It's readable now ^^"
goldi34: yes
Cubingwitsk: Thanks! And Sorry for wrong coding earlier :)
goldi34: it's ok
Cubingwitsk: :)
Anonymous: Mast Answer ji ❤
Cubingwitsk: Thanka
Similar questions