Math, asked by namrataroy4000, 4 months ago

if the altitude of the sun is at 60 degree then the height of the vertical tower that will cast a shadow of length 20 meters is

Answers

Answered by Anonymous
78

Given:-

  • Angle of elevation = 60°
  • Length of Shadow = 20m

Find:-

  • Length of Tower.

Diagram:-

Let, AB be the tower whose height is 'h'm and BC be the shadow of 20m.

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(1.02,1.02){\framebox(0.2,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.4,1)(4.3,1.25)(4.6,1.7) \put(3.8,1.3){$\bf 60^{\circ}$}\put(2.8,0.7){\bf 20m}\put(0.1,3){ $ \bf 'h'm $ } \end{picture}

Solution:-

In ABC

we, know

 \implies\sf \dfrac{P}{B} = \tan C \\  \\

 \implies\sf \dfrac{P}{B} = \tan  {60}^{ \circ}  \\  \\

 \sf where  \small{\begin{cases} \sf P =  \text{'h'm}\\ \sf B = 20m\\ \sf tan \: 60^{\circ} = \sqrt{3} \end{cases}}

Substituting these values:-

 \dashrightarrow\sf \dfrac{P}{B} = \tan  {60}^{ \circ}  \\  \\

 \dashrightarrow\sf \dfrac{h}{20} = \sqrt{3}  \\  \\

Cross-multiplication:-

 \dashrightarrow\sf \dfrac{h}{20} = \dfrac{\sqrt{3}}{1}  \\  \\

 \dashrightarrow\sf h = 20 \sqrt{3}m \\  \\

\underline{\boxed{\sf\therefore Height\:of\:the\:tower\:is\:20\sqrt{3}m}}

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(1.02,1.02){\framebox(0.2,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.4,1)(4.3,1.25)(4.6,1.7) \put(3.8,1.3){$\bf 60^{\circ}$}\put(2.8,0.7){\bf 20m}\put( - 0.4,3) { $ \bf 20 \sqrt{3}m $ } \end{picture}

Answered by dimpu29
3

Answer:

h=20√3.

Step-by-step explanation:

please mark me as brainilist please and follow me

Similar questions