Physics, asked by sonalibandal40159, 24 days ago

If the amplitude of oscillation of a damped harmonic oscillation falls to 1/e of its initial value then the time taken by the oscillator is………………..​

Answers

Answered by AnkitaSahni
0

Given: Let initial amplitude be A

          Final amplitude of damped oscillation = \frac{1}{e}A

To Find: Time taken by oscillation to fall from initial to final value

Solution:

  • Formula used for damped oscillations is:

                      A = A_{0}e^{-\frac{bt}{2m} }                  (1)

Where, A is current amplitude

            A_{0} is initial amplitude

            e is base of natural logarithm

            b is coefficient of damping

            t is time taken

    and m is mass of oscillator

Substituting values in (1)

                      ⇒  \frac{A_{0} }{e} = A_{0}e^{\frac{-bt}{2m} }

                     ⇒    \frac{1}{e} = e^{\frac{-bt}{2m} }

                     ⇒   e^{-1} = e^{\frac{-bt}{2m} }

                     ⇒    \frac{bt}{2m} = 1                              (equating powers of e)

                     ⇒   t = \frac{2m}{b}s

Therefore, it takes t = \frac{2m}{b}s for oscillator's amplitude to fall to \frac{1}{e} of its initial value.

Similar questions