Math, asked by krishalimbachiya, 7 months ago

if the α and β are the zeros of p (x) = ax^2+bx+ c so find the value of 1÷α+1÷β

Answers

Answered by pulakmath007
39

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If  \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial a {x}^{2}  + bx + c

Then

 \displaystyle \:  \alpha  +   \beta \:  =  -  \frac{b}{a}  \:  \: and \:  \:   \: \alpha \beta \:  =  \frac{c}{a}

GIVEN

 \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial a {x}^{2}  + bx + c

TO DETERMINE

  \displaystyle \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }

CALCULATION

Since  \alpha \:  \: and \:  \:  \beta \: are the zeroes of the quadratic polynomial a {x}^{2}  + bx + c

Then

 \displaystyle \:  \alpha  +   \beta \:  =  -  \frac{b}{a}  \:  \: and \:  \:   \: \alpha \beta \:  =  \frac{c}{a}

So

  \displaystyle \:  \frac{1}{ \alpha }  +  \frac{1}{ \beta }

  =  \displaystyle \:  \frac{ \alpha  +  \beta }{ \alpha \beta  }

  =  \displaystyle \:  \frac{  -  \frac{b}{a}  }{  \frac{c}{a}   }

  =  -  \displaystyle \:  \frac{ b }{  c   }

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

ADDITIONAL INFORMATION

A general equation of quadratic equation is

a {x}^{2} +  bx + c = 0

Now one of the way to solve this equation is by SRIDHAR ACHARYYA formula

For any quadratic equation

a {x}^{2} +  bx + c = 0

The roots are given by

 \displaystyle \: x =  \frac{ - b \pm \:  \sqrt{ {b}^{2} - 4ac } }{2a}

Similar questions