Math, asked by Anonymous, 5 hours ago

If the angle between two lines is 45 ° and the slope of one of the line is 1/2 find the slope of the other line.

No spam plz!! ​

Answers

Answered by mathdude500
16

\large\underline{\sf{Solution-}}

Given that

  • The angle between two lines is 45 ° and the slope of one of the line is 1/2.

Let assume that

  • The slope of other line be m.

We know,

Angle p between two lines having slope m and M respectively is given

\red{\rm :\longmapsto\:\boxed{\tt{ tan \: p = \bigg | \dfrac{M - m}{1 + Mm} \bigg| }}}

Here,

\red{\rm :\longmapsto\:p = 45\degree}

\red{\rm :\longmapsto\:M = \dfrac{1}{2}}

So, on substituting the values in above formula, we get

\rm :\longmapsto\:tan45\degree = \bigg |\dfrac{\dfrac{1}{2}  - m}{1 + \dfrac{1}{2} m} \bigg|

\rm :\longmapsto\:1 = \bigg |\dfrac{1  - 2m}{2 +  m} \bigg|

\rm :\longmapsto\: \pm \: 1 \:  =  \: \dfrac{1 - 2m}{m + 2}

Case 1

\rm :\longmapsto\:  1 \:  =  \: \dfrac{1 - 2m}{m + 2}

\rm :\longmapsto\:m + 2 = 1 - 2m

\rm :\longmapsto\:m + 2m = 1 - 2

\rm :\longmapsto\:3m =  - 1

\bf\implies \:\boxed{\tt{  \: m \:  =  \:  -  \:  \frac{1}{3} \: }}

Case 2

\rm :\longmapsto\:   -  \: 1 \:  =  \: \dfrac{1 - 2m}{m + 2}

\rm :\longmapsto\: - m - 2 = 1  - 2m

\rm :\longmapsto\: - m + 2m = 1 + 2

\bf\implies \:\boxed{\tt{  \: m \:  =  \: 3 \: }}

Hence,

\bf\implies \:\boxed{\tt{  \: m \:  =  \: 3 \:  \:  \: or \:  \:  \:  -  \:  \frac{1}{3}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Different forms of equations of a straight line

1. Equations of horizontal and vertical lines

Equation of line parallel to x - axis passes through the point (a, b) is x = a.

Equation of line parallel to x - axis passes through the point (a, b) is x = a.

2. Point-slope form equation of line

Equation of line passing through the point (a, b) having slope m is y - b = m(x - a)

3. Slope-intercept form equation of line

Equation of line which makes an intercept of c units on y axis and having slope m is y = mx + c.

4. Intercept Form of Line

Equation of line which makes an intercept of a and b units on x - axis and y - axis respectively is x/a + y/b = 1.

5. Normal form of Line

Equation of line which is at a distance of p units from the origin and perpendicular makes an angle β with the positive X-axis is x cosβ + y sinβ = p.

Answered by IIXxSavageSoulxXII
17

Easy explanation:

  • If angle between two lines with slopes m1 and m2 is α then tan α = |(m1-m2)/(1+m1*m2)|

tan 45° = |\frac{m-1/4}{1+m/4}|

=> \frac{4m-1}{m+4}=-1

=>- m-4 = 4m-1 => 5m = -3

=> m = -3/5.

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

 \green{ \underbrace{ \small \pink{ \underline{ \red{\sf \: Related:Questions}}}}}

https://brainly.in/question/47413588?

https://brainly.in/question/5159065?

https://brainly.in/question/47417738?

https://brainly.in/question/910605?

https://brainly.in/question/6602045?

https://brainly.in/question/33274909?

Similar questions