Math, asked by StrongGirl, 10 months ago

If the angle elevation of the tap of a summit is 45° and a person climbs at an inclination of 30° up to 1km. where the angle of elevation of top becomes 60° then the height of the summit is?

Attachments:

Answers

Answered by amansharma264
10

ANSWER.

The height of the summit is

 \sf \to \: h \:  =  \dfrac{ \sqrt{3} + 1 }{2}  \:  \:  \: k.m

 \sf  \to \:  \orange{{ \underline{step -  \:  by \:  - step \:  - explanation}}}

 \sf \to \: angle \: of \: elevation \: of \: top \: of \: summit \:  = 45 {}^{0}  \\  \\  \sf \to \: person \: climb \: in \: the \: inclination \: of \: 30 {}^{0} upto \: 1 \: km \\  \\  \sf \to \: angle \: of \: elevation \: of \: top \: becomes \:  = 60 {}^{0}

 \sf \to \: in \:  \triangle \: cdf \\  \\  \sf \to \:  \sin(30 {}^{0}  ) =  \frac{z}{1} \\  \\  \sf \to \:  \dfrac{1}{2}   =  \dfrac{z}{1} \\  \\  \sf \to \: z \:  =  \frac{1}{2}   .......(1)

 \sf \to \:  \cos( 30 {}^{0} )  =  \dfrac{y}{1}  \\  \\  \sf \to \:  \dfrac{ \sqrt{3} }{2}  =  \dfrac{y}{1}  \\  \\  \sf \to \: y =  \frac{ \sqrt{3} }{2}

 \sf \to \: in \:  \triangle \: abc \\  \\  \sf \to \:  \tan(45 {}^{0} )  =  \frac{h}{x  +  y}  \\  \\  \sf \to \: x + y = h \\  \\  \sf \to \:  x = h - y \\  \\  \sf \to \: x = h -  \frac{ \sqrt{3} }{2} ......(2)

 \sf \to \: in \:  \triangle \: bde \\  \\  \sf \to \:  \tan(60 {}^{0} )  =  \frac{h - z}{x}  \\  \\  \sf \to \:  \sqrt{3}  =  \frac{h - z}{x}  \\  \\  \sf \to \:  \sqrt{3} x = h - z \\  \\  \sf \to \:  \sqrt{3} (h -  \frac{ \sqrt{3} }{2} ) = h -  \frac{1}{2}  \\  \\  \sf \to \:  \sqrt{3} ( \frac{2h -  \sqrt{3} }{ \cancel{2}} ) =  \frac{2h - 1}{ \cancel{2}} \\  \\  \sf \to \: 2 \sqrt{3}  - 3 = 2h - 1 \\  \\  \sf \to \: 2 \sqrt{3}h - 2h = 2

 \sf \to \:  \cancel{2}h( \sqrt{3}  - 1) =  \cancel{2} \\  \\  \sf \to \: h \:  =  \frac{1}{ \sqrt{3}  - 1}  \\  \\  \sf \to \:  \frac{1}{ \sqrt{3}  - 1}  \times   \frac{ \sqrt{3}  + 1}{ \sqrt{3}  + 1}  \\  \\  \sf \to \:  \frac{ \sqrt{3} + 1 }{3 - 1}   =  \frac{ \sqrt{3}  + 1}{2}  \\  \\  \sf \to \:  \green{{ \underline{height \: of \: summit \:  =  \frac{ \sqrt{3} + 1 }{2} }}km}

Similar questions