Math, asked by laharina04gmailcom, 11 months ago

If the angles A, B, C of a triangle are in A.P.
and sides a, b, c are in G.P, then a?,b2,c2
are in
a. AP
b.HP
c.GP
d.none​

Answers

Answered by Anonymous
8

Question:

If the angles A, B, C of a triangle are in A.P. and sides a, b, c are in G.P, then

 a {}^{2}  , b {}^{2} , c {}^{2}

are in?

Theory :

⇒ if a,b,c are in ap

then , 2b= a+c

⇒if  a {}^{2}  , b {}^{2} , c {}^{2}

are in Gp then ,

 b {}^{2}  = ac

{\purple{\boxed{\large{\bold{Cosine \: Formula }}}}}

Theorem :

In any ∆ABC,

1)a {}^{2}  = b {}^{2}  + c {}^{2}  - 2bc \cos(A)

2)b {}^{2}  = c {}^{2}  + a {}^{2}  - 2ac \cos(B)

3)c {}^{2}  = a {}^{2}  + b {}^{2}  - 2ab \cos(C)

Given 3 sides but no angle, this form is more convenient:

 \cos(A)  =  \frac{b{}^{2} + c {}^{2}   - a{}^{2}  }{2bc}

 \cos(B)  =  \frac{a {}^{2} + c {}^{2}   - b {}^{2}  }{2ac}

 \cos(C)  =  \frac{a {}^{2} + b{}^{2}   - c{}^{2}  }{2ab}

Solution :

it is given that ∠A, ∠B and ∠C are in Ap

⇒∠2B = ∠ A+ ∠C

We know that :

sum of all angles in a triangle = 180°

∠ A + ∠B +∠C = 180°

⇒∠2B +∠B = 180°

⇒ 3∠B = 180°

⇒∠B = 60°

 a {}^{2}  , b {}^{2} , c {}^{2} are in Gp

 b {}^{2}  = ac

Now apply cosine rule;

 \cos(B)  =  \frac{a {}^{2} + c {}^{2}   - b {}^{2}  }{2ac}

  \cos(60)  =  \frac{a {}^{2} + c {}^{2}   - b {}^{2}  }{2ac}

 \frac{1}{2}  =  \frac{a {}^{2}  + c {}^{2}  - b {}^{2} }{2ac}

ac = a {}^{2}  + c{}^{2}  - b {}^{2}

put   ac  =b {}^{2}

_____________________

b {}^{2}  = a {}^{2} +  c {}^{2}  - b {}^{2}

2b {}^{2}  = a {}^{2}  + c {}^{2}

⇒ this is the condition for AP

therefore  a {}^{2}  , b {}^{2} , c {}^{2} are in AP

correct option a) AP

Similar questions