Math, asked by VishalNath4904, 1 year ago

If the angles a b c of a triangle are in a.P then find the value of cosb

Answers

Answered by shadowsabers03
2

Answer:

1/2

Given:

Angles of ΔABC are in AP.

To find:

Value of cos B.

Assumption:

⇒ ∠A = a

⇒ ∠B = a + d

⇒ ∠C = a + 2d

(a = first term; d = common difference)

⇒ ∠C = 90° (For finding cos B)

Concepts used:

⇒ Sum of angles of a triangle is 180°.

⇒ Ratio of sides of a triangle of angles 30°, 60° and 90° opposite to respective angles is 1 : √3 : 2.

Step-by-step explanation:

⇒ As the sum of angles of any triangle is 180°, then so is ∠A + ∠B + ∠C. Add these angles in the terms of 'a' and 'd'.

⇒ We get that ∠B = 60°. Consider the triangle of angles ∠A = 30°, ∠B = 60°, ∠C = 90°.

⇒ According to the ratio, as ∠A = 30° and ∠C = 90°, BC and AB becomes 1 and 2. So find the value of cos 60°. The adjacent side of 60° is opposite side of 30°, i.e., 1.

⇒ Thus the answer is 1/2.

-----------------------------------------------------------------

-----------------------------------------------------------------

Method:

⇒ ∠A + ∠B + ∠C = 180°

⇒ a + a + d + a + 2d = 180°

⇒ 3a + 3d = 180°

⇒ 3(a + d) = 180°

⇒ a + d = 180° / 3

⇒ a + d = 60°

⇒ ∠B = 60°

-----------------------------------------------------------------

⇒ ∠A = 180° - (∠B + ∠C)

⇒ ∠A = 180° - (60° + 90°)

⇒ ∠A = 180° - 150°

⇒ ∠A = 30°

-----------------------------------------------------------------

⇒ BC : AC : AB = 1 : √3 : 2

⇒ BC = 1; AC = √3; AB = 2

-----------------------------------------------------------------

⇒ cos 60° = BC / AB

⇒ cos 60° = 1/2

-----------------------------------------------------------------

Similar questions