Math, asked by tanishkajadhav982, 1 month ago

If the angles A,B,C of ∆ABC are in A.P and angleA = 30°, C=5 , then find values of a and b​

Attachments:

Answers

Answered by Mysterioushine
71

Given :

  • Angles of ΔABC are in AP
  • ∠A = 30° , c = 5.

To Find :

  • The values of a and b

Solution :

The general condition when a , b , c are in AP is 2b = a + c.

Here , we are given that ∠A , ∠B and ∠C (three angles of ΔABC) are in AP.

 \\  \implies  \rm\angle \: A +  \angle \: C = 2( \angle \: B) \:  \: ...(1) \\  \\

By angle sum property of a triangle ,

 \\  \implies \rm \angle \: A \:  +  \angle \: B  + \angle \: C=  {180}^{ \circ}  \\  \\

From equation(1) ;

 \\  \implies  \rm\angle \: 2B +  \angle \:  B=  {180}^{ \circ}  \\  \\

 \implies \rm \angle \: B =  \dfrac{180}{3}  \\  \\

 \\  \implies {\boxed{\rm{ \angle \: B =   {60}^{ \circ} }}} \\  \\

Now we have ,

  • ∠A = 30° , ∠B = 60°

Substituting these values in the equation(1) we get ;

 \\  \implies \rm \:  {30}^{ \circ}   +  \angle \: C=2( 60 {}^{ \circ}) \\  \\

 \\  \implies \rm \angle \: C = 120^{ \circ}  -  {30}^{ \circ}  \\  \\

 \\  :  \implies  {\boxed{\rm{ \angle \: C=  {90}^{ \circ} }}} \\  \\

Now we have ;

  • ∠A = 30° , ∠B = 60° , ∠C = 90°.

Applying sine rule [properties of triangle] formula ,

 \\  {\boxed{\bf{ \dfrac{a}{ \sin(A)}   = \dfrac{b}{ \sin(B) } =  \dfrac{c}{ \sin(C)}  }}} \\  \\

Here ,

  • a , b , c are lengths of the sides of triangle. [ a is length of BC , b is length of AC and c is length of AB]
  • Sin(A) , Sin(B) , Sin(C) are the angles.

We have the measure of ∠A of this triangle as 30°. So , Sin(A) for the given triangle is

 \\  \implies \: \rm \sin(A)  =  \sin( {30}^{ \circ} )  =  \frac{1}{2}  \\

Similarly ,

 \\  \implies \rm \sin(B)  =  \sin( {60}^{ \circ} )  =  \dfrac{ \sqrt{3} }{2}  \\

 \\  \implies \rm \:  \sin(C)  =  \sin( {90}^{ \circ} )  = 1 \\

Considering this relation ,

 \\   \implies \rm \:  \dfrac{a}{ \sin(A)}   =  {\underbrace{\rm{\dfrac{b}{ \sin(B) } =  \dfrac{c}{\sin(C)}}}}  \\  \\

 \\  \implies \rm \dfrac{b}{ \sin(B) }  =  \dfrac{c}{ \sin(C) }  \\  \\

We have the values of c , Sin(C) and Sin(B). Substituting the values in the equation we get ;

 \\  \implies \rm \dfrac{b}{  \frac{ \sqrt{3} }{2}  }  =  \dfrac{5}{1}  \\  \\

 \\  \implies  {\boxed{\rm{\blue{b =  \dfrac{5 \sqrt{3} }{2} }}}} \\

Now consider the relation ,

 \\  \implies {\underbrace{\rm{\dfrac{a}{ \sin(A)}   = \dfrac{b}{ \sin(B) } }}}=  \dfrac{c}{ \sin(C) } \\

 \\  \implies \:  \dfrac{a}{ \sin(A) }  =  \dfrac{b}{ \sin(B) }  \\  \\

We have the values of Sin(A) , b and Sin(B). Substituting the values in the equation we get,

 \\  \implies \rm  \dfrac{a}{ \frac{1}{2} } =  \dfrac{5( \frac{ \sqrt{3} }{2}) }{ \frac{ \sqrt{3} }{2} }   \\  \\

 \\  \implies \rm \: 2a = 5 \\

 \\  \implies{\boxed{\blue{\rm{a =  \frac{5}{2} }}}} \\

Hence ,

  • The values of a and b are \sf{\dfrac{5}{2}} and \sf{\dfrac{5\sqrt{3}}{2}} respectively.
Answered by Anonymous
4

Step-by-step explanation:

(b) we have A+B+C= 180° .

Also A, B, C are in A. p = 2B = A+c.

:- 3B=180° or B=60°

now b² = a² + c² - 2ac cos B

= a²+c²-2ac cos 60°

or b²= a² + c² - ac.

i hope full help it.

b. option is correct✅

Similar questions