If the angles of a quadrilateral are (2x+10),(3x+15),(2x-10)and(3x-5) the measure of it greatest angle is
Answers
Answer:
We know,
= > sum of all angles of any quadrilateral = 360
Here,
= > ( 2x + 10 ) + ( 3x + 15 ) + ( 2x - 10 ) + ( 3x - 5 ) = 360
= > 2x + 10 + 3x + 15 + 2x - 10 + 3x - 5 = 360
= > 2x + 3x + 2x + 3x +10 + 15 - 10 - 5 = 360
= > 10x + 10 = 360
= > 10x = 360 - 10
= > x = 350/10
= > x = 35
On observing I found the greatest angle is 3x + 15, so
= > 3( 35 ) + 15
= > 105 + 15
= > 120
Greatest angle is 120
Sum of all angles of any quadrilateral = 360
= ( 2x + 10 ) + ( 3x + 15 ) + ( 2x - 10 ) + ( 3x - 5 ) = 360
= 2x + 10 + 3x + 15 + 2x - 10 + 3x - 5 = 360
= 2x + 3x + 2x + 3x +10 + 15 - 10 - 5 = 360
= > 10x + 10 = 360
= > 10x = 360 - 10
= > x = 350/10
= > x = 35
The greatest angle is 3x + 15, so
= 3( 35 ) + 15
= 105 + 15
= 120
The greatest angle is 120