Math, asked by shabbirabbas053, 1 day ago

if the angles of a quadrilateral are (2x°) (5x+10°) (4x+10°) and(2x+15°) then find the angles

Answers

Answered by NewGeneEinstein
1

Given angles of quadrilateral are

  • 2x
  • 5x+10
  • 4x+10
  • 2x+15

We know

\boxed{\sf Sum\:of\:angles\:of\;Quadrilateral =360°}

\\ \sf\longmapsto 2x+(5x+10)+(4x+10)+(2x+15)=360

\\ \sf\longmapsto 2x+5x+10+4x+10+2x+15=360

\\ \sf\longmapsto 2x+5x+4x+2x+10+10+15=360

\\ \sf\longmapsto 13x+35=360

\\ \sf\longmapsto 13x=360-35

\\ \sf\longmapsto 13x=325

\\ \sf\longmapsto x=\dfrac{325}{13}

\\ \sf\longmapsto x=25

Angles are

\\ \sf\longmapsto 2x=2(25)=50°

\\ \sf\longmapsto 5x+10=5(25)+10=135°

\\ \sf\longmapsto 4x+10=4(25)+10=110°

\\ \sf\longmapsto 2x+15=2(25)+15=65°

Answered by dthiruvalluri
0

Answer:

in any quadrilateral sum of all angles

so , (2x) + (5x+10) + (4x+10) +(2x+15) =360

(2x + 5x +4x + 2x) +(10 + 10+15)=360

13x+35=360

13x=360-35

13x=325

x=325/13

x=25

Step-by-step explanation:

2x=50

5x+10=135

4x+10=110

2x+15=65

Similar questions