If the angles of a quadrilateral are in the ratio of 2:3:3:4. Find all the angles.
Answers
If the angles of a quadrilateral are in the ratio of 2:3:3:4, find all the angles.
Let the unknσwn cσnstαnt вє ч
==> 2y + 3y + 3y + 4y = 360° [sum σf αll thє αnglєs ín α quαrílαtєrαl = 360°]
==> 12y = 360°
==> y = 360°/12
==> y = 30°
Therefore, the angles are :
==> 2y = 2(30°) = 60°
==> 3y = 3(30°) = 90°
==> 3y = 3(30°) = 90°
==> 4y = 4(30°) = 120°
2y + 3y + 3y + 4y = 360° [sum σf αll thє αnglєs ín α quαrílαtєrαl = 360°]
60° + 90° + 90° + 120° = 360°
360° = 360°
hєncє vєrífíєd !!
✯_Sɪᴛᴀ05_✯
Let the unknown constant be y
==> 2y + 3y + 3y + 4y = 360° [sum of all the angles ín a quarílateral = 360°] =
==> 12y = 360°
==> y = 360/12
==> y = 30°
Therefore, the angles are :
==> 2y = 2(30° = 60°
==> 3y = 3(30°) = 90° = =
==> 3y = 3(30°) = 90°
> 4y = 4(30°) = 120°
2y + 3y + 3y + 4y = 360° [sum of all the angles ín a quarílateral = 360°]
60° + 90° + 90° + 120° = 360°
360° = 360°
hence verified !!