Math, asked by Anonymous, 4 months ago

If the angles of a quadrilateral are in the ratio of 2:3:3:4. Find all the angles.

Answers

Answered by Anonymous
66

\huge{\bold{\color{magenta}{quєstíσn:}}}

If the angles of a quadrilateral are in the ratio of 2:3:3:4, find all the angles.

 \\  \\

\huge{\bold{\color{magenta}{sσlutíσn:}}}

Let the unknσwn cσnstαnt вє ч

==> 2y + 3y + 3y + 4y = 360° [sum σf αll thє αnglєs ín α quαrílαtєrαl = 360°]

==> 12y = 360°

==> y = 360°/12

==> y = 30°

 \\

Therefore, the angles are :

==> 2y = 2(30°) = 60°

==> 3y = 3(30°) = 90°

==> 3y = 3(30°) = 90°

==> 4y = 4(30°) = 120°

 \\  \\

\huge{\bold{\color{magenta}{vєrífícαtíσn:}}}

2y + 3y + 3y + 4y = 360° [sum σf αll thє αnglєs ín α quαrílαtєrαl = 360°]

60° + 90° + 90° + 120° = 360°

360° = 360°

 \\

hєncє vєrífíєd !!

 \\  \\

✯_Sɪᴛᴀ05_✯

Answered by Studyingkid
4

\underline{\underline{ \sf \huge \pink{Solution:}}}

Let the unknown constant be y

==> 2y + 3y + 3y + 4y = 360° [sum of all the angles ín a quarílateral = 360°] =

==> 12y = 360°

==> y = 360/12

==> y = 30°

Therefore, the angles are :

==> 2y = 2(30° = 60°

==> 3y = 3(30°) = 90° = =

==> 3y = 3(30°) = 90°

> 4y = 4(30°) = 120°

\underline{\underline{ \sf \huge \red{Verification:}}}

2y + 3y + 3y + 4y = 360° [sum of all the angles ín a quarílateral = 360°]

60° + 90° + 90° + 120° = 360°

360° = 360°

hence verified !!

Similar questions