Math, asked by beKind, 2 months ago

If the angles of a quadrilateral are x, x + 30°, x + 60 and 4x then the difference between greatest angle and the smallest is8​

Answers

Answered by SachinGupta01
21

\underline{\underline{\sf{\maltese\:\:Given}}}

 \sf Angles  \: of \:  a  \: quadrilateral \:  are :

 \sf \implies First  \: angle : x

 \sf \implies Second  \: angle : x + 30^ \circ

 \sf \implies Third  \: angle : x + 60^ \circ

 \sf \implies Fourth  \: angle : 4x

\underline{\underline{\sf{\maltese\:\:To \:  find }}}

  \sf \implies Difference \:  between \:  greatest  \: angle  \: and  \: the \:  smallest  \: angle=  \: ?

\underline{\underline{\sf{\maltese\:\:Solution  }}}

\sf \dashrightarrow \underline{ \boxed{ \sf Sum \: of \: the \: interior \: angles \: of \: quadrilateral = 360 ^ \circ}}

 \small{ \bf So,  }

 \sf \implies x +  x + 30^ \circ+ x + 60^ \circ  +  4x = 360 ^ \circ

 \sf \implies 7x +  90^ \circ = 360 ^ \circ

 \sf \implies 7x  = 360 ^ \circ -   90^ \circ

 \sf \implies 7x  = 270 ^ \circ

 \sf \implies x  =  \dfrac{270 ^ \circ}{7}

 \sf \star \:  \underline{ Angles  \: of \:  the  \: quadrilateral \:  are : }

 \sf  \implies First \:  angle  \: (x) = \dfrac{270 ^ \circ}{7}

 \sf  \implies Second  \: angle \:  (x + 30^  \circ) = \dfrac{270 ^ \circ}{7}  + 30^  \circ  = \dfrac{480 ^ \circ}{7}

 \sf \implies Third  \: angle \: (x + 60^ \circ) = \dfrac{270 ^ \circ}{7}  + 60^ \circ = \dfrac{690 ^ \circ}{7}

 \sf \implies Fourth  \: angle  \: ( 4x) = 4 \times \dfrac{270 ^ \circ}{7}  = \dfrac{1080^ \circ}{7}

 \small{ \bf Now,   }

  \sf \star \: Difference \:  between \:  greatest  \: angle  \: and  \: the \:  smallest  \: angle:

 \sf \implies Greatest \:  angle = \dfrac{1080^ \circ}{7}

 \sf \implies Smallest  \: angle = \dfrac{270 ^ \circ}{7}

 \small{ \bf So,  }

 \sf \implies  \dfrac{1080^ \circ}{7}  - \dfrac{270 ^ \circ}{7}

 \sf \implies  \dfrac{1080^ \circ - 270 ^ \circ}{7}

 \sf \implies  \dfrac{810 ^ \circ}{7}   \:  \: or \:  \: 115.71^ \circ

 \small{ \bf Therefore,   }

  \sf \implies Difference \:  between \:  greatest  \: angle  \: and  \: the \:  smallest  \: angle= \dfrac{810^\circ}{7}   \:  \: or \:  \: 115.71^\circ

Answered by amitnrw
1

Given :   the angles of a quadrilateral are x, x + 30°, x + 60 and 4x  

To Find :  the difference between greatest angle and the smallest angle is

Solution:

angles of a quadrilateral are x, x + 30°, x + 60 and 4x

Sum of all angles of Quadrilateral = 360°

x + x + 30° + x + 60° + 4x =  360°

=> 7x = 270°

=> x = 270° / 7

Smallest x = 270° / 7   and

Largest  4x = 4*  270° / 7

Difference  = 4x - x  = 3 *  270° / 7   =  115.7°

Learn More:

Verify experimentally that the sum of the angles of a quadrilateral is ...

brainly.in/question/26810090

A student attempted to draw a quadrilateral PLAY where PL is 3 cm ...

brainly.in/question/11417993

Can u draw the quadrilateral ABCD by constructing triangle ABD first ...

brainly.in/question/11299230

Similar questions