Math, asked by arunhall389, 2 months ago

If the angles of a quadrilateral are x°, (2x + 13), (3x + 10)° and (x-6)°. Calculate value of x
If the angles of a quadrilateral are in ratio of 2:4:5:7. Calculate the largest and smallest​

Answers

Answered by kp59362812
0

Answer:

x + 2x + 13 + 3x+10 + x - 6 = 3600

→ 7x + 17 = 360

→ 7x = 343

→ x = 490

Answered by VεnusVεronίcα
27

If the angles of a quadrilateral are , (2x + 13)°, (3x + 10)° and (x - 6)°, calculate the value of x.

 \:

Let the angles be :

 \blue{ \pmb{ \sf{ \qquad :  \implies \:  \angle1 = x \degree}}}

 \blue{ \pmb{ \sf{ \qquad :  \implies \: \angle2 = (2x + 13) \degree }}}

 \blue{ \pmb{ \sf{ \qquad :  \implies \: \angle3 = (3x + 10) \degree }}}

 \blue{ \pmb{ \sf{ \qquad :  \implies \:  \angle4 = (x - 6) \degree}}}

We know that all the angles in a quadrilateral add upto 360°. So :

 \pink{ \pmb{ \sf{ \qquad :  \implies \:x \degree + (2x + 13) \degree + (3x + 10) \degree + (x - 6) \degree = 360 \degree }}}

 \pink{ \pmb{ \sf { \qquad :  \implies \:x  + 2x   + 3x + x + 13 + 10 - 6 = 360}}}

 \pink{ \pmb{ \sf{ \qquad :  \implies \:7x +17 = 360  }}}

 \pink{ \pmb{ \sf{ \qquad :  \implies \:7x = 360 - 17 }}}

 \pink{ \pmb{ \sf{ \qquad :  \implies \: 7x = 343}}}

 \pink{ \pmb{ \sf{ \qquad :  \implies \: x =  \cancel \dfrac{343}{7} }}}

 \pink{ \pmb{ \sf{ \qquad :  \implies \: x = 49 }}}

So, now the angles are :

 \blue{ \pmb{ \sf{ \qquad :  \implies \:  \angle1 = x \degree = 49 \degree}}}

 \blue{ \pmb{ \sf{ \qquad :  \implies \:  \angle2 =(2x + 1 3) \degree = 111 \degree }}}

 \blue {\pmb{\sf{ \qquad  : \implies \:  \angle 3 =(3x + 10) \degree = 157 \degree }}} \:

 \blue{ \pmb{ \sf{ \qquad :  \implies \: \angle3 = (x - 6) \degree = 43 \degree }}}

 \\

_________________________

 \\

If the angles of a quadrilateral are in the ratio of 2:4:5:7, calculate the smallest and largest angle of the quadrilateral.

 \:

Let the unknown constant be x. So the angles will be :

 \orange{ \pmb{ \sf{ \qquad :  \implies \:  \angle1 = 2x}}}

 \orange{ \pmb{ \sf{ \qquad :  \implies \:  \angle2 = 4x}}}

 \orange{ \pmb{ \sf{ \qquad :  \implies \:  \angle 3 = 5x}}}

 \orange{ \pmb{ \sf{ \qquad :  \implies \: \angle4 = 7x }}}

We know that all the angles in a quadrilateral add upto 360° :

 \purple{ \pmb{ \sf{ \qquad :  \implies \: 2x + 4x + 5x + 7x = 360 \degree}}}

 \purple{ \pmb{ \sf{ \qquad :  \implies \: 18x = 360}}}

 \purple{ \pmb{ \sf{ \qquad :  \implies \: x =  \cancel \dfrac{360}{18} }}}

 \purple{ \pmb{ \sf{ \qquad :  \implies \:x = 20 }}}

So, now the angles are :

 \orange{ \pmb{ \sf{ \qquad :  \implies \: \angle 1 = 2x = 40 \degree}}}

 \orange{ \pmb{ \sf{ \qquad :  \implies \:  \angle2 = 4x = 80 \degree}}}

 \orange{ \pmb{ \sf{ \qquad :  \implies \: \angle 3 = 5x = 100 \degree }}}

 \orange{ \pmb{ \sf{ \qquad :  \implies \:  \angle4 = 7x = 140 \degree}}}

Here, the smallest angle is 40° and largest angle is 140°.

 \\

_________________________

 \\

N O T E : Kindly swipe the screen from left to right in order to view the answer completely in case you are using the app in your mobile.

Similar questions