Math, asked by Skatie, 6 months ago

If the angles of a quadrilateral are x°,(x + 20)°,2x°,(3x – 80)°,the the greatest

angle is​

Answers

Answered by kgopikapillai20
6

Answer:

Step-by-step explanation:

Angles of quadrilateral =  x°, (x + 20)°, 2x°, (3x – 80)°

=>  x + (x + 20) + 2x +(3x – 80) = 360° (Angle Sum Property of a Quadrilateral)

     7x - 60 = 360

     7x = 360 + 60

     7x = 420

       x = \frac{420}{7}

       x = 60

∴ The angles are  x° = 60°

                             (x + 20)° = 60 + 20 =80°

                             2x° = 2(60) = 120°

                             (3x – 80)° = 3(60) - 80 = 180 -80 = 100°

∴The greatest angle in the quadrilateral = 2x° = 120°

Answered by KrisGalaxy
24

Answer:

 \bf \fbox \red { The value of x is 60⁰ }

Step-by-step explanation:

Angles are = x⁰ , ( x + 20⁰ ) , 2x⁰ , ( 3x - 80 )⁰

We know that, the

Sum of all the angles of a quadrilateral = 360⁰

Therefore;

x⁰  +  ( x + 20⁰ )  + 2x⁰  +  ( 3x - 80 )⁰ =  {360}^{0}  \\  \\   x  + x + 20 + 2x + 3x - 80 = 360 \\  \\ 7x - 60 = 360 \\  \\ 7x = 360 + 60 \\  \\ x =  \frac{420}{7}  \\  \\ x = 60 \:

 \bf \fbox \green {Hence the value of x is 60⁰ }

Similar questions