Math, asked by DancingMermaid12, 12 days ago

If the angles of a triangle are (x -10°) , (2x + 10°) and 6x , what is the value of x?​

Answers

Answered by TwilightShine
57

   \bold{\underline{\mathfrak{ \bigstar  \: Answer \: -}}}

  • The value of x = 20.

   \bold{\underline{\mathfrak{ \bigstar  \: To  \: find \:  -}}}

  • The value of x.

  \bold{\underline{ \mathfrak{ \bigstar  \: Step\!-\!by\!-\!step  \: explanation  \: -}}}

  • Here, the angles of a triangle (with a variable) are given to us. We have to find the value of x. Let's use the angle sum property of triangles to solve this question!

Angle Sum Property -

 \\

 \bigstar \:  \underline{ \boxed{ \sf Sum  \: of  \: all  \: angles_{(triangle)} = 180^{\circ}}}

 \\

Here -

  • The angles are (x - 10)°, (2x + 10)° and (6x)°.

Therefore -

 \longmapsto \sf x - 10 + 2x + 10 + 6x = 180

 \longmapsto \sf x - 10 + 2x + 10 + 6x = 180

 \sf  \longmapsto9x = 180

 \longmapsto  \sf x =   \cancel{\dfrac{180}{9} }

 \longmapsto \underline{ \boxed{ \sf x = 20}}  \: \bigstar

 \\

Thus -

  • The value of x = 20.

________________________________

And the angles of the triangle are -

 \tt  \mapsto (x - 10)^{\circ} = (20 - 10)^{\circ} = 10^{ \circ}

 \mapsto \tt (2x + 10)^{\circ} = (2 \times 20 + 10)^{\circ} = 50^{ \circ}

 \tt \mapsto (6x)^{\circ} = (6 \times 20)^{\circ} = 120^{ \circ}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by EmberMoonbliss
44

\red\bigstar{\large{\underline{\underline{\bf{Question :-}}}}}

  • If the angles of a triangle are (x -10°) , (2x + 10°) and 6x , what is the value of x?

\red\bigstar{\large{\underline{\underline{\bf{Answer :-}}}}}

  • x = 20°

\red\bigstar{\large{\underline{\underline{\bf{Given :-}}}}}

  • ★Angles of triangle :-
  • ➼(x - 10°)
  • ➼(2x + 10°)
  • ➼6x
  • \sf\red{Sum \: of \: all \: angles \: of \: Triangle \: = \: 180°}

\red\bigstar{\large{\underline{\underline{\bf{Solution :-}}}}}

\sf\hookrightarrow\bold{(x - 10°) \:  + \: (2x + 10°) \: + \: 6x \: = \: 180°}

\sf\hookrightarrow\bold{(x \: + \: 2x \: + 6x) \: + \: (-10° \: + \:  10°)  \: = \: 180°}

\sf\hookrightarrow\bold{9x \: + \: 0  \: = \: 180°}

\sf\hookrightarrow\bold{9x \: = \:  180°}

\sf\hookrightarrow\bold{ x \: = \: \cancel\dfrac{180°}{9}}

\sf\hookrightarrow\bold{ x \: = \: 20°}

  • Thus , the value of x is 20°

━━━━━━━━━━━━━━━━━━━━

And the angles of the triangle are :-

  • ( x - 10°) = 20° - 10° = 10°
  • Angle (x - 10°) = 10°
  • (2x + 10°) = 40° - 10° = 30°
  • Angle (2x + 10°) = 30°
  • 6x = 6 × 20° = 120°
  • Angle 6x = 120°

━═━═━═━═━═━═━═━═━━═━═━═━═━═━═━═━═━━═━═━═

Similar questions