Math, asked by naveenknani2580, 8 months ago

If the angles of elevation of the top of the candle from two coins distant ‘a’
cm and ‘b’ cm (a>b) from its base and in the same straight line from it are
30˚ and 60˚, then find the height of the candle

Answers

Answered by Nilesh859
39

First of All

Let the case in form of a right ∆ABC & ∆ABD, both on same side of AB.

So ATQ

Let AB be the candle,

BD= b,

BC = a,

∠ADB = 60°

∠ACB = 30°

To find :

Height of candle, AB

Solution :

\mathrm{In \:  \triangle ABD}\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \mathrm{tan \:  D = \frac{AB}{BD}}\\ \implies \mathrm{tan  \: 60 ° = \frac{AB}{b}}\\( \: \because tan \: 60° = \sqrt{3} \: ) \\ \implies   \:  \:  \:  \:  \:  \:  \:  \:  \mathrm{\sqrt{3} =  \frac{AB}{b} }\\ \implies \orange{\mathbb{AB = \sqrt{3}b}}--(a) \\  \\ Similarly,  \: \mathrm{In  \:  \triangle ABC}\\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathrm{tan \: C=  \frac{AB}{BC} } \\ \implies \mathrm{tan \: 30° =  \frac{AB}{a} }\\ (  \: \because \mathrm{tan  \:  30°}= \frac{1}{\sqrt{3}} \: )\\ \implies  \:  \:  \:  \:  \:  \:  \: \mathrm{\frac{1}{ \sqrt{3} } =  \frac{AB}{a}  }\\ \:  \:  \:\implies   \mathrm{\blue{AB=  \frac{a}{ \sqrt{3} } } --(b)}

Multiplying (a) with (b)

We get

\mathrm{AB \: •  \: AB= \sqrt{3}b  \times  \frac{a}{ {\sqrt{3} }} }\\ \implies  \mathrm{{AB}^{2}= ab} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \implies  \:  \: \orange{\boxed{\green {\mathrm{AB =  \sqrt{ab} \:  \:  \: ✓  } }}}  \:  \ \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:

Attachments:
Answered by gayatrikumari99sl
1

Answer:

\sqrt{ab} cm is the required height of candle

Step-by-step explanation:

Explanation:

Given , there are two coins one at a distance of 'a' cm  from the candle and  the other is at 'b' cm from the candle .

Angles of elevation of the top of the candle from two coins are 30 °and 60°.

Let AB be the candle  whose height is 'h' cm and let   C and D  be the coins .

Therefore , ∠ACB = 30° and ∠ADB = 60 °

Step 1:

Now in triangle Δ ADC

tan 60° = \frac{AB}{BD}  = \frac{h}{b}            

\sqrt{3}  = \frac{h}{b} ⇒   h = b\sqrt{3}........(i)            (value of tan 60 ° is \sqrt{3})

Similarly , In Δ ACB we have

tan30° = \frac{AB}{BC}  = \frac{h}{a}

\frac{1}{\sqrt{3} }  = \frac{h}{a}   ⇒ h = \frac{a}{\sqrt{3} } ........(ii)            (value of tan 30 ° is \frac{1}{\sqrt{3} })

Step2:

Multiply  (i) and (ii) we get

h^{2} = b\sqrt{3} .\frac{a}{\sqrt{3} }

h^{2} = ab  

h =  \sqrt{ab} cm  = AB

Final answer :

Hence , height of the candle is \sqrt{ab} cm

#SPJ3

Attachments:
Similar questions