Math, asked by amirtha110208, 4 months ago

if the angles of
triangle are
(3x-5), (2x -15) and (5x-50), then
the values of
least angles and greatest angles are

Answers

Answered by EliteZeal
33

A n s w e r

 \:\:

G i v e n

 \:\:

  • Angles of triangle are (3x - 5), (2x - 15) & (5x - 50)

 \:\:

F i n d

 \:\:

  • Least angle

 \:\:

  • Greatest angle

 \:\:

S o l u t i o n

 \:\:

We know that the sum of interior angles of triangle is 180°

 \:\:

So ,

 \:\:

Angle 1 + Angle 2 + Angle 3 = 180° ⚊⚊⚊⚊ ⓵

 \:\:

  • Angle 1 = (3x - 5) ⚊⚊⚊⚊ ⓶

  • Angle 2 = (2x - 15) ⚊⚊⚊⚊ ⓷

  • Angle 3 = (5x - 50) ⚊⚊⚊⚊ ⓸

 \:\:

Putting the above values in ⓵

 \:\:

Angle 1 + Angle 2 + Angle 3 = 180°

 \:\:

➜ 3x - 5 + 2x - 15 + 5x - 50 = 180

 \:\:

➜ 10x - 70 = 180

 \:\:

➜ 10x = 180 + 70

 \:\:

➜ 10x = 250

 \:\:

➨ x = 25° ⚊⚊⚊⚊ ⓹

 \:\:

Putting x = 25 from ⓹ to ⓶

 \:\:

➜ Angle 1 = (3x - 5)

 \:\:

➜ Angle 1 = (3(25) - 5)

 \:\:

➨ Angle 1 = 70° ⚊⚊⚊⚊ ⓺

 \:\:

  • Hence Angle 1 is 70°

 \:\:

Putting x = 25 from ⓹ to ⓷

 \:\:

➜ Angle 2 = (2x - 15)

 \:\:

➜ Angle 2 = (2(25) - 15)

 \:\:

➨ Angle 2 = 35° ⚊⚊⚊⚊ ⓻

 \:\:

  • Hence Angle 2 is 35°

 \:\:

Putting x = 25 from ⓹ to ⓸

 \:\:

➜ Angle 3 = (5x - 50)

 \:\:

➜ Angle 3 = (5(25) - 50)

 \:\:

➨ Angle 3 = 75° ⚊⚊⚊⚊ ⓼

 \:\:

  • Hence Angle 3 is 75°

 \:\:

From ⓺ , ⓻ & ⓼ we got that the least angle is Angle 2 i.e (2x - 15)

and the greatest angle is Angle 3 i.e (5x - 50)

Similar questions