Math, asked by Simranjit11, 1 year ago

If the area,base and corresponding altitude of a parallelogram are x^2, x-3 and x+4 respectively,then find the value of x.​

Answers

Answered by hitanshbansal66
6

Answer:

x=12

Step-by-step explanation:

Area=(x-3)(x+4)=x^2

=x^2+x-12=x^2

therefore x=12

Attachments:
Answered by SteffiPaul
1

Given,

  • Area of the parallelogram = x^2 sq. units
  • The base of the parallelogram = x-3
  • The altitude of the parallelogram = x+4

To find,

  • We have to find the value of x.

Solution,

We can simply find the value of x by using the following formula:

     Area of the parallelogram = base * altitude   (*)

Area of the parallelogram = x^2 sq. units

The base of the parallelogram = x-3

The altitude of the parallelogram = x+4

Now, using (*), we get

                                           x²   = (x-3)(x+4)

Now, using distributive law, we get

                                           x² = x(x+4)-3(x+4)

                                           x² = x²+4x-3x-12

                                           x² = x² +x -12

Transposing x² from RHS to LHS, we get

                                           x²-x² = x-12

                                               0  = x-12

Now, transposing -12 from RHS to LHS, we get

                                                 12 = x

Hence, if the area, base, and corresponding altitude of a parallelogram are x², x-3, and x+4 respectively, then the value of x is 12.

Similar questions