Math, asked by vanya3436, 3 months ago

If the area of a circle is 154 sq cm. Find the circumference of the circle.

Answers

Answered by diajain01
14

{ \boxed{ \underline{ \pink{ \dag{AnsWer}}}}}

★GIVEN:-

  •  \sf{Area \:  \:  of \:  \:  Circle  \: =  \: 154cm^2}

★TO FIND:-

  • Circumference

★FORMULA USED:-

  •  \sf{Area \:  \:  of  \:  \: Circle  \: = \: \pi {r}^{2}  }

  •  \sf{Circumference  \:  \: of \:  \:  Circle  \: = \: 2\pi \: r }

★SOLUTION:-

 \sf{Area \:  \:  of  \:  \: Circle  \: = \: \pi {r}^{2}  }

 :  \longrightarrow \sf{154\: = \:  \frac{22}{7}   \times {r}^{2}  }

 :  \longrightarrow \sf{ \frac{154 \times 7}{22}  =  {r}^{2} }

 :  \longrightarrow \sf{{r}^{2}  =  \frac{1078}{22} }

 :  \longrightarrow \sf{{r}^{2}  = 49}

 :  \longrightarrow \sf{{r}^{2}  =  {7}^{2} }

 :  \longrightarrow \sf{\: r =  \pm  \: 7}

As radius can't be negative. So,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: { \boxed{ \underbrace{r = 7}}}

 \sf{Circumference  \:  \: of \:  \:  Circle  \: = \: 2\pi \: r }

 \sf{Circumference  \:  \: of \:  \:  Circle  \: = \: 2 \times  \frac{22}{7}  \times \: 7 }

 \sf \purple{Circumference  \:  \: of \:  \:  Circle  \: = 44cm }

Answered by Zackary
21

Answer:

\huge{\underline{\color{teal}{\textsf{\textbf{~~~answer}}}}} \\

 \bf\star{\underline{given}}

• C (o,r ) is a circle

Area = 154cm²

 \bf\star{\underline{required \: to \: find \: }}

• radius of circle so that we can find circumference too

• in last we have to find circumference.

\bf\star{\underline{Solution ~ :- }}

we know that area of circle is 154cm²

so,

area of circle = πr²

similarly , 154cm² = πr²

154cm² = \frac{22}{7} × r²

= \frac{154 × 7}{22} = r²

= 7 × 7 = r²

= 49 = r²

Radius =\sqrt{49} = 7

Radius = 7cm

  \bf\star{\underline{Now~circumference~of ~circle}}

Formula of circumference of circle = 2πr

[ take π = \frac{22}{7} ]

= 2 × \frac{22}{7} × 7

[ radius = 7cm ( given ) ]

= 2 ×  \frac{22}{\cancel7}×  \cancel7

= 2 × 22

= 44cm

hence , the circumference of this circle is 44cm

Similar questions