Math, asked by Sonamsinha5886, 10 months ago

If the area of a quadrilateral formed by the points (a,a), (-a,a), (a,-a)and (-a,-a) where a is not equal to 0 is 64 square units then identify the type of the quadrilateral

Answers

Answered by MaheswariS
3

\underline{\textsf{Given:}}

\textsf{Points are}

\mathsf{(a,a),\,(-a,a),\,(a,-a),\,(-a,-a)}

\underline{\textsf{To find:}}

\textsf{Type of the quadrilateral formed by the given points}

\underline{\textsf{Solution:}}

\textsf{Let the given points be}

\mathsf{A(a,a),B(-a,a),c(a,-a),D(-a,-a)}

\textsf{First we length of the sides and diagonals}

\mathsf{AB=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{AB=\sqrt{(a+a)^2+(a-a)^2}}

\mathsf{AB=\sqrt{(2a)^2}=2a}

\mathsf{BC=\sqrt{(-a-a)^2+(a+a)^2}}

\mathsf{BC=\sqrt{(-2a)^2+(2a)^2}}

\mathsf{BC=\sqrt{4a^2+4a^2}}

\mathsf{BC=\sqrt{8a^2}=2\sqrt{2}a}

\mathsf{CD=\sqrt{(a+a)^2+(-a+a)^2}}

\mathsf{CD=\sqrt{(2a)^2}=2a}

\mathsf{AD=\sqrt{(a+a)^2+(a+a)^2}}

\mathsf{AD=\sqrt{(2a)^2+(2a)^2}}

\mathsf{AD=\sqrt{4a^2+4a^2}}

\mathsf{AD=\sqrt{8a^2}=2\sqrt{2}a}

\mathsf{AB=CD\;\;\&\;\;BC=AD}

\implies\textsf{Opposite sides are equal}

\mathsf{AC=\sqrt{(a-a)^2+(a+a)^2}}

\mathsf{AC=\sqrt{4a^2}=2a}

\mathsf{BD=\sqrt{(-a+a)^2+(a+a)^2}}

\mathsf{BD=\sqrt{4a^2}=2a}

\mathsf{AC=BD}

\implies\textsf{Diagonals are equal}

\textsf{Hence ABCD is a rectangle}

Similar questions