Math, asked by sus077, 7 months ago

if the area of a rectangle is equal to 96 square meters, find the length and width of the rectangle if the perimeter is equal to 40 meters.

Answers

Answered by Ataraxia
13

GIVEN :-

  • Area of the rectangle = 96 m²
  • Perimeter of the rectangle = 40 m

TO FIND :-

  • Length of the rectangle
  • Breadth of the rectangle

SOLUTION :-

Let,

Length of the rectangle = x

Breadth of the rectangle = y

\bullet\bf \ Perimeter \ of \ the \ rectangle = 2 (Length + Breadth )

  \longrightarrow\sf 2(x+y) = 40 \\\\\longrightarrow x+y= 20 \\\\\longrightarrow y = 20-x  \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  ................(1)

\bullet\bf \ Area \ of \ the \ rectangle = Length \times Breadth

  \longrightarrow\sf x\times y = 96

  Substituting the value of y,

   \longrightarrow\sf x(20-x) = 96 \\\\\longrightarrow 20x-x^2= 96 \\\\\longrightarrow x^2-20x = -96 \\\\\longrightarrow x^2-20x+96 = 0 \\\\\longrightarrow x^2-12x-8x+96 = 0 \\\\\longrightarrow x(x-12)- 8(x-12)= 0 \\\\\longrightarrow (x-12)(x-8)=0 \\\\\longrightarrow \bf x = 12 \  , \ x= 8

  • If x = 12, then y = 20 - 12 = 8
  • If x = 8, then y = 20 -  8 = 12

Length of the rectangle = 12 or 8

Breadth of the rectangle = 8 or 12

Answered by Anonymous
121

 \underline{\underline{\purple{\sf Given:}}}

  • Area of Rectangle = 96m²
  • Perimeter of Rectangle = 40m

 \underline{\underline{\purple{\sf Find:}}}

  • Length and width of the Rectangle

 \underline{\underline{\purple{\sf Solution:}}}

Let, the length of Rectangle = l

and breadth of Rectangle = b

So, we know that

 \underline{ \boxed{\sf Perimeter  \: of \:  Rectangle = 2(l + b)}}

where,

  • Perimeter = 40m

So,

\sf \to Perimeter  \: of \:  Rectangle = 2(l + b)

\sf \implies 40= 2(l + b)

\sf \implies l + b =  \dfrac{40}{2}  = 20

\sf \implies l + b = 20m......(1)

_______________

Here, We know that,

 \underline{ \boxed{\sf Area  \: of \:  Rectangle = l \times b}}

where,

  • Area of Rectangle = 96m²

So,

 \to\sf Area  \: of \:  Rectangle = l \times b

 \implies\sf 96= l \times b

 \implies\sf l =  \dfrac{96}{b}

 \implies\sf l =  \dfrac{96}{b}m.......(2)

_______________

Now, use eq(2) in eq(1) we, get

\sf \to l + b = 20m

\sf \to  \dfrac{96}{b} + b = 20 \qquad [l =  \dfrac{96}{b} ]

\sf \to  \dfrac{96}{b} + b  - 20  = 0

\sf \to  \dfrac{96 +  {b}^{2} - 20b}{b} = 0

\sf \to 96 +  {b}^{2} - 20b= 0 \times b

\sf \to 96 +  {b}^{2} - 20b= 0

\sf \to {b}^{2} - 20b + 96= 0

Now, solve by middle split term

\sf \to {b}^{2} - 8b - 12b + 96= 0

\sf \to b(b - 8) - 12(b - 8) = 0

\sf \to (b - 12) (b - 8) = 0

\begin{gathered} \sf b - 12 = 0 \\  \sf b = 12 \end{gathered} \qquad \qquad\begin{gathered} \sf b - 8= 0 \\  \sf b = 8 \end{gathered}

 \underline{ \sf\therefore Ignoring \: b = 12 \: we \: take \:  b = 8}

Hence, Breadth of Rectangle will be 8m

______________

put value of b in eq(1)

\sf \longrightarrow l + b = 20m

\sf \longrightarrow l + 8 = 20

\sf \longrightarrow l = 20 - 8

\sf \longrightarrow l = 12m

Hence, Length of Rectangle will be 12m

________________

Length of Rectangle = 12m

Breadth of Rectangle = 8m

Similar questions