Math, asked by tanisha24102007, 3 months ago

If the area of a rectangular field is 2a2 +7ab -15b2

sq. m, find the dimensions of the field

in terms of the variables.

Answers

Answered by yogyanshrajput6
0

Answer:

Given−

\rm :\longmapsto\:Area_{(rectangle)} = {2a}^{2} + 7ab - {15b}^{2}:⟼Area

(rectangle)

=2a

2

+7ab−15b

2

\begin{gathered}\begin{gathered}\begin{gathered}\bf \: To \: Find - \begin{cases} &\sf{Breadth \:} \\ &\sf{Length } \end{cases}\end{gathered}\end{gathered}\end{gathered}

ToFind−{

Breadth

Length

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}} \end{gathered}

FormulaUsed−

1. \: \: \: \boxed{ \sf \: Area_{(rectangle)} = Length \times Breadth}1.

Area

(rectangle)

=Length×Breadth

\large\underline{\sf{Solution-}}

Solution−

Given that

\rm :\longmapsto\:Area_{(rectangle)} = {2a}^{2} + 7ab - {15b}^{2}:⟼Area

(rectangle)

=2a

2

+7ab−15b

2

\rm :\longmapsto\:Area_{(rectangle)} = {2a}^{2} + 10ab - 3ab - {15b}^{2}:⟼Area

(rectangle)

=2a

2

+10ab−3ab−15b

2

\rm :\longmapsto\:Area_{(rectangle)} = {2a}(a + 5b) - 3b (a + {5b} ):⟼Area

(rectangle)

=2a(a+5b)−3b(a+5b)

\bf\implies \:Area_{(rectangle)} = (2a - 3b)(a + 5b)⟹Area

(rectangle)

=(2a−3b)(a+5b)

As we know,

\rm :\longmapsto\:Area_{(rectangle)} = Length \times Breadth:⟼Area

(rectangle)

=Length×Breadth

So, on comparing, we get

\begin{gathered}\begin{gathered}\begin{gathered}\bf \: Dimensions - \begin{cases} &\sf{Breadth = (2a - 3b) \:units} \\ &\sf{Length = (a + 5b) \: units} \end{cases}\end{gathered}\end{gathered}\end{gathered}

Dimensions−{

Breadth=(2a−3b)units

Length=(a+5b)units

Or

\begin{gathered}\begin{gathered}\begin{gathered}\bf \: Dimensions- \begin{cases} &\sf{Breadth = (a + 5b)\:units} \\ &\sf{Length = (2a - 3b) \: units} \end{cases}\end{gathered}\end{gathered}\end{gathered}

Dimensions−{

Breadth=(a+5b)units

Length=(2a−3b)units

Additional Information :-

1. \: \: \: \boxed{ \sf \: Perimeter_{(rectangle)} = 2(Length + Breadth)}1.

Perimeter

(rectangle)

=2(Length+Breadth)

2. \: \: \: \boxed{ \sf \: Area_{(circle)} = \pi \: {r}^{2} }2.

Area

(circle)

=πr

2

3. \: \: \: \boxed{ \sf \: Perimeter_{(circle)} = 2\pi \: r}3.

Perimeter

(circle)

=2πr

4. \: \: \: \boxed{ \sf \: Perimeter_{(square)} = 4 \times side}4.

Perimeter

(square)

=4×side

5. \: \: \: \boxed{ \sf \: Area_{(square)} = {(side)}^{2} }5.

Area

(square)

=(side)

2

Similar questions