Math, asked by hshdgsgsg, 1 month ago

If the area of a rhombus be 24 cm² and one of its diagonal be 4 cm, find the perimeter of the rhombus.​

Answers

Answered by Anonymous
17

Perimeter = 8√10 cm

Step-by-step explanation:

\large \pink{  \pmb{ \bf{\frak{Given:-}}}}

  • Area of rhombus = 24 cm²

  • One of it's diagonal = 4 cm

\large \pink{ \pmb{ \bf{ \frak{To \: Find:-}}}}

  • Perimeter of rhombus.

\large \pink{ \pmb{ \bf{ \frak{Solution: - }}}}

As we know that -

:  \mapsto \purple{\boxed{\bf \: Area \: of \: rhombus =  \frac{1}{2}  \times d_1 \times  d_2}}

So,

ACQ,

\therefore \sf \:  \frac{1}{2}  \times AC \times BD = 24 \\  \\  \\  \sf➛ \:  \frac{1}{2}  \times BD \times 4 = 24 \\  \\  \\ ➛   \sf{2} \times BD = 24 \\  \\  \\  ➛ \large { \bf{ \boxed{  \bf\red{BD = 12 \: cm}}}}

Thus, we have AC = 4 cm and BD = 12 cm

\dashrightarrow \: \sf OA =  \frac{1}{2} AC =  \blue{2 \: cm} \\  \\  \\  \dashrightarrow \: \sf OB =  \frac{1}{2} BD =  \green{6 \: cm}

Since the diagonals of a rhombus bisects each other at right angle. Therefore, ∆OAB is right ∆, right angled at O.

By Pythagoras theorem in ∆AOB, we have

 \sf \: AB {}^{2}  = OA {}^{2}  +  {OB}^{2}  \\  \\  \\  \implies \sf \:AB {}^{2} =  {2}^{2}   +  {6}^{2}  \\  \\  \\  \implies \sf \: AB  =  \sqrt{40}  \\  \\  \\   \implies \bf\large \pink{AB = 2 \sqrt{10} cm}

Hence,

\sf \: Perimeter _{(rhombus)}  = 4 \times side \\  \\  \\ ➥ \sf \:Perimeter _{(rhombus)} = 4 \times 2 \sqrt{10}  \: cm \\  \\  \\   \large\pmb{ \bf{➥ \color{indigo} \:Perimeter _{(rhombus) = 8 \sqrt{10} \: cm  }}}

 \tiny \underline{\pink{\therefore\: \sf\:Perimeter _{(rhombus)} = 8 \sqrt{10} \: cm }}

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Attachments:
Similar questions