if the area of a rhombus be 48 metre square and one of its diagonal is 12 cm find its altitude
Answers
Answer:
altitude = area ÷ side
= 48 ÷ 9.92
= 4.83 cm
Hence, the height of the rhombus is 4.83 cm
Step-by-step explanation:
Given,
Area of Rhombus = 48 cm2
one diagonal = 5 cm
Area of a rhombus = fraction numerator d 1 space cross times space d 2 over denominator 2 end fraction = altitude × side
48 = fraction numerator 5 space cross times space d 2 over denominator 2 end fraction
fraction numerator 48 space cross times space 2 over denominator 5 end fraction = d2
length of diagonal 2 = 19.2 cm
We know, diagonals of a rhombus are perpendicular and bisect each other.
So, according to Pythagoras theorem,
side2 = open parentheses fraction numerator d 1 over denominator 2 end fraction close parentheses squared plus space open parentheses fraction numerator d 2 over denominator 2 end fraction close parentheses squared
= open parentheses 5 over 2 close parentheses squared plus space open parentheses fraction numerator 19.2 over denominator 2 end fraction close parentheses squared
= (2.5)2 + (9.6)2
= 6.25 + 92.16
= 98.41
side = square root of 98.41 end root space equals space 9.92
So, each side of the rhombus = 9.92 cm
altitude = area ÷ side
= 48 ÷ 9.92
= 4.83 cm
Hence, the height of the rhombus is 4.83 cm