Math, asked by roli39, 1 year ago

If the area of a rhombus is 48cm Sq. and one of its diagonal is 6cm, find its altitude. ​

Answers

Answered by Anonymous
14

 \large\bf\underline \blue{Given:-}

  • Area of rhombus = 48cm²
  • One diagonal = 48cm

 \large\bf\underline \blue{To \: find:-}

  • Altitude of Rhombus.

 \huge\bf\underline \purple{Solution:-}

Let ABCD be the given rhombus, with Diagonal AC = 6cm.

★ Area of rhombus =1/2 × Diagonal 1 × Diagonal 2.

  : \implies \rm \: 48 = AC \times  BD \times  \frac{1}{2}  \\  \\ : \implies \rm \:48 = \cancel 6 \times  \frac{1}{ \cancel2}  \times BD \\  \\ : \implies \rm \:   \cancel\frac{48}{3}   = BD \\  \\   : \implies \bf \:BD = 16cm \\  \\   \large \bf\:{So} \: the \: other \: diagonal \:  = 16cm \\  \\  \rm \: We \: know \: that \: diagonals \: bisect \: each \\  \rm  \: other \: at \: right \: angle. \\ \bf\:So \\   : \implies \rm \:OB =  \frac{1}{2}  BD \\  \\ : \implies \rm \:OB  =  \frac{1}{2}  \times 16\\  \\ : \implies \rm \:OB  =  \cancel \frac{16}{2}  \\  \\ : \implies \bf \:OB  = 8cm \\  \\

Now , IN triangle ∆BOC,

  • By Pythagoras theorem:-

 \rm \: \:  \:  \:  \:  \:  \:  \:  BC {}^{2}  = OB  {}^{2} + OC {}^{2}   \\  \\   : \implies \rm \: BC {}^{2}  =  {8}^{2}  +  {3}^{2}  \\  \\ : \implies \rm \: BC {}^{2}  = 64 + 9 \\  \\ : \implies \rm \: BC =  \sqrt{73}  \\  \\

Now,

  • Area of rhombus = base × altitude.

: \implies \rm \: Base \:  \times Altitude \:  = 48 \\  \\ : \implies \rm \: \sqrt{73}  \times Altitude = 48 \\  \\ : \implies \rm \:Altitude =  \frac{48}{ \sqrt{73} }  \\  \\  : \implies \rm \:Altitude = \frac{48}{ \sqrt{73} }  \times  \frac{ \sqrt{73} }{ \sqrt{73} }  \\  \\  : \implies \rm \:Altitude = \frac{48 \sqrt{73} }{73}\\\\ : \implies \bf \:Altitude = 5.6

Attachments:
Similar questions