Math, asked by abkbanerjee09, 4 months ago

If the area of a semi-circle protractor is 44/7 sq cm. Find the diameter

Answers

Answered by MaheswariS
8

\textbf{Given:}

\textsf{Area of the semi-circle protractor is}\;\mathsf{\dfrac{44}{7}\;sq.cm}

\textbf{To find:}

\textsf{Find the diameter}

\textbf{Solution:}

\textsf{Consider,}

\textsf{Area of the semi-circle protractor}\mathsf{=\dfrac{44}{7}\;sq.cm}

\implies\mathsf{\dfrac{\pi\,r^2}{2}=\dfrac{44}{7}}

\implies\mathsf{\dfrac{1}{2}{\times}\dfrac{22}{7}{\times}r^2=\dfrac{44}{7}}

\implies\mathsf{11{\times}r^2=44}

\implies\mathsf{r^2=\dfrac{44}{11}}

\implies\mathsf{r^2=4}

\implies\mathsf{r=2\;cm}

\mathsf{Now,}

\textsf{Diameter of the semi-circle protractor}

\mathsf{=2{\times}Radius}

\mathsf{=2{\times}2}

\mathsf{=4\;cm}

\textbf{Answer:}

\mathsf{Diameter\;is\;4\;cm}

Answered by Anonymous
14

Given:- The area of a semi-circle protractor is 44/7 sq cm.

To find:- The diameter.

⠀⠀ ━━━━━━━━━━━━━━━━━━━━━━

\sf{\underline{According\: to\: the\: question}}

\sf{\dashrightarrow{\dfrac{\pi r^2}{2} = \dfrac{44}{7}}}

\sf{\dashrightarrow{\dfrac{1}{2} \times \dfrac{22}{7} \times r^2 = \dfrac{44}{7}}}

\sf{\dashrightarrow{11 \times r^2 = 44}}

\sf{\dashrightarrow{r^2 = \dfrac{44}{11}}}

\sf{\dashrightarrow{r^2 = 4}}

\sf{\dashrightarrow{r = 2\: cm}}

Now, diameter of the semi-circle protractor.

\sf{\dashrightarrow{2 \times r}}

\sf{\dashrightarrow{2 \times 2}}

\mathfrak{\dashrightarrow{\boxed{\pink{4\: cm}}}}

Hence,

  • The diameter is 4 cm.
Similar questions