Math, asked by mahimari1997, 5 months ago

if the area of a semicircle be 77sq.cm find its perimeter​

Answers

Answered by awmimk1985
0

Answer:

Answer. Therefore,perimeter is 36cm

Answered by Anonymous
31

 \large{\underline{\underline{\sf{ \maltese \: {Given:-}}}}}

  • Area of the semicircle = 77 cm²

 \large{\underline{\underline{\sf{ \maltese \: {To \:  find:-}}}}}

  • Perimeter of the circle = ?

  • The perimeter = ?

\large{\underline{\underline{\sf{ \maltese \: {Solution:-}}}}}

We know that:–

 \qquad \bull  \: \bf{Area  \: of \: circle =Area ~of~semicircle \times 2}

\qquad \quad {:}  \longrightarrow \sf{Area \: of \: circle  =  \bigg(77 \times 2 \bigg) {cm}^{2}  } \\

\qquad \quad {:}  \longrightarrow \sf{Area \: of \: circle  =154  \:  {cm}^{2}  } \\

  • Let us first find the radius of the circle:

We know that :

 \qquad \bull  \: \bf{Area  \: of \: circle =\pi \:   \bigg \{ {r}^{2} \bigg \} }

\qquad \quad {:}  \longrightarrow \sf{  154 =  \dfrac{22}{7} \times  {r}^{2}  } \\

\qquad \quad {:}  \longrightarrow \sf{   \cancel{154}^{\large7}  \times  \frac{7}{ \cancel{22}_{\large{1}}}=   {r}^{2}  } \\

\qquad \quad {:}  \longrightarrow \sf{   7 \times 7 =   {r}^{2}  } \\

\qquad \quad {:}  \longrightarrow \sf{   49 =   {r}^{2}  } \\

\qquad \quad {:}  \longrightarrow \sf{    {r}^{2}  = 49 } \\

\qquad \quad {:}  \longrightarrow \sf{    {r}  = \sqrt{ 49} } \\

\qquad \quad {:}  \longrightarrow \sf{     \underline{ \boxed {\sf{{r}  =7 }}}} \\

 \quad \therefore \: \bf{radius = 7 \: cm }

Now perimeter:–

\qquad \quad {:}  \longrightarrow \sf{  perimeter = 2 \times  \dfrac{22}{7} \times 7 } \\

\qquad \quad {:}  \longrightarrow \sf{  perimeter = 2 \times  \dfrac{22}{ \cancel{7} _{ \large{1}} } \times \cancel 7  ^{ \large{1}} } \\

\qquad \quad {:}  \longrightarrow \sf{  perimeter = 2 \times 22 } \\

\qquad \quad {:}  \longrightarrow \sf{  perimeter = 44 } \\

 \quad \therefore \: \bf{perimeter = \underline  {\underline{44 \: cm} }}

\large{\underline{\underline{\sf{ \maltese \: {Answer:-}}}}}

  • The perimeter of the circle is 44 cm
Similar questions