Math, asked by jabseized, 2 months ago

if the area of a square is a2 + b2/4 + c2/9 + ab + b2/3 + 2/3ca . find the perimeter of the square​

Answers

Answered by manmeetmaan20
4

Answer:

Perimeter of square = 4a + 2b + (4c/3)

Step-by-step explanation:

{\small{\tt{ a^2 + \dfrac{b^2}{4} + \dfrac{c^2}{9} + ab + \dfrac{bc}{3}+ \dfrac{2}{3}ca }}} \\  \\ { \small{ \implies{ \tt{ {(a)}^{2}  +  { (  \dfrac{b}{2}  )}^{2}  +  { ( \dfrac{c}{3}  )}^{2}  + 2(a)(  \dfrac{b}{2}  ) + 2( \dfrac{b}{2}  )( \frac{c}{3} ) + 2( \frac{c}{3} )(a)}}}}\\ \\ { \small{ \implies{ \tt{{(a +  \frac{b}{2}  +  \frac{c}{3} )} ^{2} }}}} \\  \\ { \small{ \implies{ \tt{(a +  \frac{b}{2}  +  \frac{c}{3} )(a +  \frac{b}{2}  +  \frac{c}{3} )}}}}

Therefore, possible side of square is a +b/2 + c/3

Now, find the perimeter of square by using the formula 4 × side

PERIMETER OF SQUARE = 4(a+b/2+c/3)

→ Perimeter of square = 4( {6a + 3b + 2c}/6)

→ Perimeter of square = 2( {6a + 3b + 2c }/3

→ Perimeter of square = 2 ( 2a + b + {2c/3} )

→ Perimeter of square = 4a + 2b + (4c/3)

Similar questions