Math, asked by aditya10955, 9 months ago

if the area of a triangle is 150 and its sides are in ratio 3:4:5 then find the perimeter of triangle​

Answers

Answered by krs1000024519
0

Answer:

60

Step-by-step explanation:

3x+4x+5x=perimeter

12x=p ----------1

150=root(s(s-3x)(s-4x)(s-5x))

22500=6x*3x*2x*x

22500=36x*x^4

625=x^4

x=5

by 1

p=60

Answered by Anonymous
0

let \: the \: sides \: be \: 3x \: 4x \: and \: 5x \\ s =  \frac{3x + 4x + 5x}{2}  = 6x \\  \\ area  \:  \:  \:  \:  \:  \:=  \sqrt{6x(6x - 3x)(6x - 4x)(6x - 5x)}  \\ \\   =  > 150 =  \sqrt{6x \times 3x \times 2x \times x}  \\  \\  =  > 150 =  \sqrt{36 {x}^{4} }  \\  \\  =  > 150 = 6 {x}^{2}  \\  \\ =  >  x \:  \:  \:  =  \sqrt{25}  \\  \\  =  > x  \:  \:  \: = 5 \\  \\ therefore \: the \: side \: are \:  \\ 3x = 15 \\ 4x = 20 \\  5x= 25 \\ perimeter \:  = 15 + 20 + 25 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: = 60 \: units

Similar questions