Math, asked by Ritammukherjee, 1 year ago

If the area of an equilateral triangel is
81 \sqrt{3}
cm² find its perimeter

Answers

Answered by Anonymous
1

\mathsf{ Solution : } \\ \\<br /><br />\mathsf{ We \: know \: that, } \\ \\<br /><br />\mathsf{ \implies Area \:of \: equilateral \: \triangle = \: \dfrac{\sqrt{3}}{4} {a}^{2}  } \\  \\  \mathsf{ \implies 81 \sqrt{3} \:  {cm}^{2}  \:  =  \:  \dfrac{ \sqrt{3} }{4} {a}^{2}  } \\  \\  \mathsf{ \implies  {a}^{2} \:  =  \:  \dfrac{ 81 \sqrt{3}  \:  {cm}^{2}  \:  \times  \: 4 \: }{ \sqrt{3} }  } \\  \\  \mathsf{ \implies {a}^{2}  \:  =  \: 9 \:  \times  \: 9 \:  \times  \: 2 \:  \times  \: 2 \:  {cm}^{2} } \\  \\ \mathsf{ \implies  a \:  =  \:  \sqrt{ \:  {9}^{2}  \:  \times  \:  {2}^{2} \:  {cm}^{2}  } } \\  \\  \mathsf{ \implies a \:  =  \: 9 \:  \times  \: 2 \:  {cm}} \\  \\  \mathsf{ \therefore \: a \:  =  \: 18 \: cm} \\  \\  \mathsf{ Now, } \\ \\<br /><br />\mathsf{ \implies Perimeter \: of \: a n\: equilateral \: \triangle \: = \: 3a }<br /> \\ \\<br /><br />\mathsf{    \qquad \qquad \qquad \:  \: \qquad  \qquad\qquad \qquad = \: 3 \: × \: 18 \: cm } \\ \\<br /><br />\mathsf {\qquad  \qquad \qquad \qquad \qquad \:  \:  \qquad \qquad = \: 54 \:  cm }<br />


\boxed{\mathsf{Hope \: it \: helps \: !! }}





Anonymous: 81 = 9 × 9 and 4 = 2 × 2
Anonymous: then , 81 × 4 = 9 × 9 × 2 × 2
Ritammukherjee: ohhhh
Ritammukherjee: i got it
Ritammukherjee: but
Ritammukherjee: why you break it into two parts?
Anonymous: To make it easy
Ritammukherjee: ohhh
Ritammukherjee: ok thank you so much
Anonymous: Ur wlcm !!
Similar questions