Math, asked by 169003, 2 days ago

if the area of an equilateral triangle is 15 root 3 cm square then find the length of its altitude​

Answers

Answered by sadnesslosthim
43

Given that : Area of an equilateral triangle is 15√3 cm²

Need to find : Altitude of that triangle

Concept :

  • Area of an equilateral triangle is :

      \sf \dfrac{\sqrt{3}}{4} \times (side)^{2}

  • Height of an equilateral triangle is :

    \sf \dfrac{\sqrt{3}}{2} \times ( side )

           _________

Solution :

Finding the side -

\sf : \; \implies  \dfrac{\sqrt{3}}{4} \times (side)^{2} = 15\sqrt{3}

\sf : \; \implies  \sqrt{3} \times (side)^{2} = 4 \times 15\sqrt{3}

\sf : \; \implies  \sqrt{3} \times (side)^{2} = 60\sqrt{3}

\sf : \; \implies   (side)^{2} = \dfrac{60\sqrt{3}}{\sqrt{3}}

\sf : \; \implies  (side)^{2} = 60

\sf : \; \implies  (side) = \sqrt{60}

\boxed{\bf{ Side = 2\sqrt{15}}} \; \bigstar

           _________

Finding the Altitude -

\sf : \; \implies Altitude =  \dfrac{\sqrt{3}}{2} \times 2\sqrt{15}

\sf : \; \implies Altitude =  \sqrt{3} \times \sqrt{15}

\sf : \; \implies Altitude =  \sqrt{3 \times 3 \times 5}

\boxed{\bf{ Altitude = 3\sqrt{5}}} \; \bigstar

           _________

  • Henceforth, the length of altitude of that equilateral triangle is 3√5 cm.

Answered by lavikaur137
0

Answer:

this is the answer of area of an equalateral triangle

Attachments:
Similar questions