Math, asked by awdheshbgs1234, 5 months ago

if the area of an equilateral triangle is 36√3 cm square find the length ​

Answers

Answered by Anonymous
3

Answer:

Let the sides of equilateral triangle be "s" cm. => s/2 = √36 cm or 6 cm. => s = (6×2) cm = 12 cm.

Answered by ImperialGladiator
10

{\blue{\underline{\underline{\purple{\textsf{\textbf{Answer : }}}}}}}

➙ The length (each side) of the equilateral △ is 12cm. {\boxed{\green{\checkmark{}}}}

{\blue{\underline{\underline{\purple{\textsf{\textbf{Step-by-step explanation: }}}}}}}

Using the formula :

{\pink{\sf{\longrightarrow{Area \: of \: the  \: \triangle = \frac{ \sqrt{3} }{4} {a}^{2}}}}}

  • a represents each side of the triangle.

 \begin{gathered} { \textsf{ \textbf{Here}}} \begin{cases} \sf{Area \: of \: the \: \triangle \: \to \: 36\sqrt{3}cm^2 (given)} \end{cases} \end{gathered}

So,

: \sf \implies \:  36\sqrt{3}  =  \frac{ \sqrt{3} }{4}  {a}^{2} \\

 : \sf \implies \:   \frac{4 \times 36 \sqrt{3} }{ \sqrt{3} }  =  {a}^{2} \\

: \sf \implies \:  4 \times 36 =  {a}^{2} \\

: \sf \implies \:   \sqrt{4 \times 36}  = a\\

: \sf \implies \:  2 \times 6 = a\\

: \sf \implies \:  a = 12cm \\

{\therefore{\underline{\underline{{\textsf{\textbf{The length of the equilateral △ is 12cm: }}}}}}}

Similar questions