Math, asked by kkumaripriyanka598, 10 months ago

If the area of an equilateral triangle is 36√3cm And the length of its side and its
perimeter

Answers

Answered by Mysterioushine
22

GIVEN :

  • AREA OF AN EQUILATERAL TRIANGLE = 363 cm²

TO FIND :

  • LENGTH OF SIDE AND PERIMETER

SOLUTION :

AREA OF EQUILATERAL TRIANGLE = 363 cm²

 =  >  \frac{ \sqrt{3}  {a}^{2} }{4}  = 36 \sqrt{3 }  \\  \\  =  >  \frac{ {a}^{2} }{4} = 36 \\  \\  =  >  {a}^{2}   = 144 \\  \\  =  > a =  \sqrt{144}  = 12 \: cm

PERIMETER OF EQUILATERAL TRIANGLE = 3a

 = 3 \times 12 = 36cm

THE SIDE OF EQUILATERAL TRIANGLE IS 12 cm AND PERIMETER = 36 cm

HOPE IT HELPS !!!!

Answered by Cynefin
70

━━━━━━━━━━━━━━━━━━━━

Required Answer:

✏ GiveN:

  • Area of equilateral triangle = \large{\rm{36 \sqrt{3}}}

✏ To finD:

  • Length of its side
  • And, perimeter of the equilateral triangle.

━━━━━━━━━━━━━━━━━━━━

How to solve?

Equilateral triangle is a triangle with all sides and angles equal, There is a direct formula to find the area of equilateral triangle when side is given.

 \large{ \cdot{ \underline{ \rm{ \purple{Area \: of \: equilateral \:  \triangle}}}}} \\  \\  \large{ \rm{ =  \frac{ \sqrt{3} }{4}  \times  {(side)}^{2} }}

And

 \large{ \cdot{ \underline{ \rm{ \purple{Perimeter \: of \: equilateral \:  \triangle}}}}} \\  \\  \large{ \rm{ = 3 \times side}}

The area formula or direct formula for area of equilateral triangle is derived from heron's formula only. Perimeter is 3 × side, because all the sides of a equilateral triangle is equal.

By using this formula, let's solve this question.

━━━━━━━━━━━━━━━━━━━━

Solution:

Given,

  • Area of equilateral triangle = \large{\rm{36 \sqrt{3}}}

By using formula,

 \large{ \rm{ \longrightarrow \: Area \: of \: eq. \triangle = 36 \sqrt{3}  {cm}^{2} }} \\  \\ \large{ \rm{ \longrightarrow \: \frac{ \sqrt{3} }{4}  \times  {side}^{2}  = 36 \sqrt{3}  {cm}^{2} }} \\  \\ \large{ \rm{ \longrightarrow \:  {side}^{2}  =  \frac{36  \cancel{\sqrt{3} } \times 4}{  \cancel{\sqrt{3}} } {cm}^{2}  }} \\  \\ \large{ \rm{ \longrightarrow \:  {side}^{2}  = 6 \times 6 \times 2 \times 2 \:  {cm}^{2} }} \\  \\ \large{ \rm{ \longrightarrow \: \boxed{ \red{ \rm{ side = 12 \: cm}}}}}

Now, we have got the side of the equilateral triangle, we can find the perimeter of the equilateral triangle.

By using formula,

\large{ \rm{ \longrightarrow \: Perimeter \: of \: eq.  \: \triangle = 3 \times side}} \\  \\ \large{ \rm{ \longrightarrow \: Perimeter \: of \: eq. \:  \triangle = 3 \times 12 \: cm}} \\  \\ \large{ \rm{ \longrightarrow \:  \boxed{ \red{ \rm{Perimeter \: of \: eq.  \:  \triangle = 36 \: cm}}}}}

Hence, our side is 12 cm and perimeter of eq. triangle = 36 cm

 \large{ \therefore{ \underline{ \underline{ \purple{ \rm{Hence \: solved \:  \dag}}}}}}

━━━━━━━━━━━━━━━━━━━━

Similar questions