Math, asked by RickyTheNotSoNerdy, 10 months ago

If the area of an equilateral triangle is 36, find its perimeter. show workin pls

Answers

Answered by Anonymous
15

Given :

  • Area of an equilateral triangle is 36 units².

To Find :

  • Perimeter of the equilateral triangle.

Solution :

Let the length of each side of the equilateral triangle be x units.

We have the formula for calculating the area of the equilateral triangle as follows,

\large{\boxed{\bold{Area\:=\:\dfrac{\sqrt{3}}{4}\:(side)^2}}}

Block in the data,

\sf{\longrightarrow{36\:=\:\dfrac{\sqrt{3}}{4}\:\times\:x^2}}

\sf{\longrightarrow{36\:\times\:4\:=\:\sqrt{3}x^2}}

\sf{\longrightarrow{144=\sqrt{3}x^2}}

\sf{\longrightarrow{\dfrac{144}{\sqrt{3}}=x^2}}

\sf{\longrightarrow{\dfrac{144}{1.73}=x^2}}

\bold{\big[\because\:\sqrt{3}=1.73\:\big]}

\sf{\longrightarrow{83.23=x^2}}

\sf{\longrightarrow{\sqrt{83.23}=x^2}}

\sf{\longrightarrow{9.12=x}}

° Each side of the equilateral triangle, x = 9.12 units.

Now to calculate the perimeter of the triangle, multiply the length of side by 3.

\sf{\longrightarrow{Perimeter\:=\:3\:\times\:x}}

\sf{\longrightarrow{Perimeter\:=\:3\:\times\:9.12}}

\sf{\longrightarrow{Perimeter\:=\:27.36\:units}}

\large{\boxed{\bold{Perimter\:of\:equilateral\:triangle\:=\:27.36\:units}}}

Answered by StarrySoul
15

Given :

• Area of an equilateral triangle is 36 units²

To Find :

• Perimeter of the Equilateral Triangle

Solution :

We know that,

 \bigstar \:  \boxed{ \sf \: Area_ {Equilateral  \: Triangle}  =   { \dfrac{\sqrt{3}}{4} }  \:   {side}^{2} }

 \longrightarrow \sf \: 36 =  { \dfrac{\sqrt {3}}{4} } \:   {side}^{2}

 \longrightarrow \sf \: \sqrt{3}  \:   {side}^{2}  = 36 \times 4

 \longrightarrow \sf \: \sqrt{3}  \:   {side}^{2}  = 144

 \longrightarrow \sf \:  \:   {side}^{2}  = \dfrac{144}{ \sqrt{3} }

[3 = 1.73]

 \longrightarrow \sf \:  \:   {side}^{2}  = \cancel \dfrac{144}{ 1.73}

 \longrightarrow \sf \:  \:   {side}^{2}  = 83.23

 \longrightarrow \sf \:  \:   side =  \sqrt{83.23}

 \longrightarrow \sf \:  \:   side =9.12 \: units \: \:  \:  (Approx)

Now, Let's find Perimeter of the Triangle

 \bigstar \:  \boxed{ \sf \: Perimeter_ {Equilateral  \: Triangle}  =   3 \times side}

 \longrightarrow \sf \: 3 \times 9.12

 \longrightarrow \sf \: 27.36 \: units \:  \:  \: (Approx)

\therefore Perimeter of the Equilateral Triangle is 27.36 units.

Similar questions