Math, asked by restlEass, 8 months ago

If the area of an equilateral triangle is 36, find its perimeter. ​

Answers

Answered by Intelligentcat
117

Answer:

\Large{\boxed{\underline{\overline{\mathfrak{\star \: QuEsTiOn :- \: \star}}}}}

Find the perimeter of the equilateral triangle whose area is 36 units²

\huge\underline{\overline{\mid{\bold{\pink{ANSWER-}}\mid}}}

\Large{\underline{\underline{\bf{GiVen:-}}}}

❧ Area of an equilateral triangle is 36 units²

\Large{\underline{\underline{\bf{To \: FiNd:-}}}}

❧ Perimeter of the Equilateral Triangle

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

Let the length of each side of the equilateral triangle be X units .

We know that,

 \star \:  \boxed{ \sf \: Area_ {Equilateral  \: Triangle}  =   { \dfrac{\sqrt{3}}{4} }  \:   {side}^{2} }

 \longrightarrow \sf \: 36 =  { \dfrac{\sqrt {3}}{4} } \:   {side}^{2}

 \longrightarrow \sf \: \sqrt{3}  \:   {side}^{2}  = 36 \times 4

 \longrightarrow \sf \: \sqrt{3}  \:   {side}^{2}  = 144

 \longrightarrow \sf \:  \:   {side}^{2}  = \dfrac{144}{ \sqrt{3} }

[√3 = 1.73]

 \longrightarrow \sf \:  \:   {side}^{2}  = \cancel \dfrac{144}{ 1.73}

 \longrightarrow \sf \:  \:   {side}^{2}  = 83.23

 \longrightarrow \sf \:  \:   side =  \sqrt{83.23}

 \longrightarrow \sf \:  \:   side =9.12 \: units \: \:  \:  (Approx)

Now,

To calculate the perimeter of the triangle , multiply length of the side by 3

Let's find Perimeter of the Triangle

 \star \:  \boxed{ \sf \: Perimeter_ {Equilateral  \: Triangle}  =   3 \times side}

 \longrightarrow \sf \: 3 \times 9.12

 \longrightarrow \sf \: 27.36 \: units \:  \:  \: (Approx)

\mathfrak{\huge{\purple{\underline{\underline{Hence}}}}}

Perimeter of the Equilateral Triangle is 27.36 units.

Answered by BrainlyEmpire
213
  • Refer to the attachment____
Attachments:
Similar questions