Math, asked by abteshma, 3 days ago

if the area of an equilateral triangle is 50√3 cm ^2 then find its altitude​

Answers

Answered by abhi96255
2

50√3 = √3* a²/4

a²= 200

a = 10√2

Answered by itsmuskaan
2

Answer:

5√6cm

Step-by-step explanation:

area of equilateral triangle =

 \frac{ \sqrt{3} }{4}  {a}^{2}  \\

so,

 \frac{ \sqrt{3} }{4}  {a}^{2}  = 50 \sqrt{3}  \\  \\  {a}^{2}  = 50 \sqrt{3}  \times  \frac{4}{ \sqrt{3} }  \\  \\  {a}^{2}  = 200 \\  \\ a = 10 \sqrt{2} cm \\

all the sides of equilateral triangle is equal

so, base = 10√2cm and height = h

area of triangle

 \frac{1}{2}  \times base \times height

50 \sqrt{3}  =  \frac{1}{2}  \times 10\sqrt{2}  \times h \\  \\ h =  \frac{50 \sqrt{3}  \times 2}{10 \sqrt{2} }  \\  \\  \frac{100 \sqrt{3} }{10 \sqrt{2} }  \\  \\  \frac{10 \sqrt{3} }{ \sqrt{2} }  \\  \\  \frac{5 \times  \sqrt{2 }  \times  \sqrt{2}  \times  \sqrt{3} }{ \sqrt{2} }  \\  \\ 5 \sqrt{6 }  = h

Similar questions