Math, asked by madhanmohan329, 9 months ago

If the area of an equilateral triangle is under root 3/4cm^2 then find the length of its each side

Answers

Answered by BrainlyConqueror0901
7

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Sides=\sqrt{2}\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Area \: of \: equilateral \: triangle =  \frac{3}{4}  { \: cm}^{2}  \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies Length \: of \: each \: side =?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies Area \: of \: equilateral \: triangle  =   \sqrt{ \frac{3}{4} }   \:  {cm}^{2}  \\  \\  \tt:  \implies \frac{ \sqrt{3} }{4}  {side}^{2}  =   \sqrt{ \frac{3}{4} }   \\  \\ \tt:  \implies  {side}^{2}  =  \frac{ \sqrt{3} }{2}  \times  \frac{4}{ \sqrt{3} }  \\  \\ \tt:  \implies  {side}^{2}  = 2 \\  \\   \green{\tt:  \implies side =  \sqrt{2}  \: cm} \\  \\   \green{\tt \therefore Sides \: of \: triangle =  \sqrt{2}  \: cm \: each}\\\\ \blue{\bold{Some\:related\:formula}}\\\\ \orange{\tt\circ\:Area\:of\:triangle=\frac{1}{2}\times b\times h}\\\\ \orange{\tt\circ\:Area\:of\:triangle=\sqrt{s(s-a)(s-b)(s-c)}}

Answered by ItzArchimedes
74

ANSWER:

Given

  • Area of equilateral triangle = √3/4 cm²

We know that

Area of equilateral triangle = √3/4 (side)²

 \tt{ \to  \dfrac{ \sqrt{3} }{4} \times   {s}^{2}  =  \sqrt{ \dfrac{3}{4} } } \\   \\  \tt{\to  {s}^{2} =   \sqrt{\frac{3}{4}} \times  \frac{4}{ \sqrt{3} }  } \\  \\  \to{ \tt{ {s}^{2} } =  \frac{  \cancel{\sqrt{3}} }  { \cancel2} \times  \frac{ \cancel4}{  \cancel{\sqrt{3}} }  }  \\  \\  \to \tt{ {side}  =  \sqrt{2} }

We know that

Equilateral triangle : A triangle which has three equal sides

Hence, length of each side = √2

Similar questions