Math, asked by satendradhakad259, 7 months ago

. If the area of an equilateral triangle is16√ 3 cm

2 then the perimeter of the triangle is​

Answers

Answered by charancherry143
1

Answer:

area = (root3)/4*side^2

16 root3=root3 (r^2/4)

16=r^2/4

r^2=64

r=8

Answered by SarcasticL0ve
20

GivEn:

  • Area of an Equilateral triangle is \sf 16 \sqrt{3}\;cm.

To find:

  • Perimeter of triangle.

SoluTion:

Here, Area of an Equilateral triangle is \sf 16 \sqrt{3}\;cm.

⠀⠀⠀⠀

As we know that,

\;\;\star\;{\boxed{\sf{\purple{Area\;of\; Equilateral\; \triangle = \dfrac{ \sqrt{3}}{4} \times (side)^2}}}}

⠀⠀⠀⠀

Therefore,

:\implies\sf \dfrac{ \sqrt{3}}{4} \times (side)^2 = 16 \sqrt{3}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf (side)^2 = 16 \cancel{ \sqrt{3}} \times \dfrac{4}{ \cancel{ \sqrt{3}}}

⠀⠀⠀⠀

:\implies\sf (side)^2 = 64

⠀⠀⠀⠀

:\implies\sf \sqrt{(side)^2} = \sqrt{64}

⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{side = 8\;cm}}}}}\;\bigstar

⠀⠀⠀⠀

Therefore,

Perimeter of Equilateral triangle is,

⠀⠀⠀⠀

:\implies\sf Perimeter = a + b + c

⠀⠀⠀⠀

Where, a, b and c are equal.

⠀⠀⠀⠀

:\implies\sf Perimeter = 8 + 8 + 8

⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\purple{Perimeter = 24\;cm}}}}}\;\bigstar

⠀⠀⠀⠀

\therefore Hence, Perimeter of Equilateral triangle is 24 cm.

Similar questions