Math, asked by vasu12378, 7 months ago

If the area of an isosceles triangle is 128cm^2 . Find its perimeter .

Answers

Answered by hanshu1234
1

Step-by-step explanation:

Let third side of triangle x

⇒Perimeter =30 cm

semiparameter(s)=2perimeter

 

⇒2S=30,S=15

⇒12+12+x=30 ⇒ x=6

⇒A=s(s−a)(s−b)(s−c)   (Heron's formula)

⇒A=15(15−12)(15−12)(15−6)=15(3)(3)(9)

⇒A=915  cm2

Answered by sonisiddharth751
4

key points :-

A triangle in which any two side equal then that triangle is considered as isosceles triangle .

let suppose in a triangle in which AB = BC then AB + BC > AC

or 2AB > AC .

Given :-

  • area of isosceles triangle = 128 cm²

To find :-

  • perimeter of isosceles triangle.

Formula used :-

 \sf \: area \: of \: isosceles \: triangle \:   =  \dfrac{ {a}^{2} }{2}  \\  \\  \sf \: perimeter \: of \: isosceles \: triangle \:  \\  \sf  = 2a +  a\sqrt{2}  \\  \\

Solution :-

we have area of isosceles triangle .

 \sf \implies \:  \dfrac{ {a}^{2} }{2}  = 128 \\  \\ \sf \implies \:  {a}^{2}  = 256 \\  \\ \sf \implies \: a =  \sqrt{256}  \\  \\ \bf \implies \: a = 16cm

now perimeter :-

 \sf \: perimeter \:  = 2a +  a\sqrt{2}   \\  \\ \sf \: put \: the \: value \: of \: \bf a(side) \sf\: we \: get \:  -  \\  \\  \sf \implies \: 2 \times 16 + 16 \sqrt{2}  \\  \\ \sf \implies \: 32 + 16 \sqrt{2}  \\  \\ \sf \implies \: 4 \sqrt{2}  + 16 \sqrt{2}  \\  \\   \sf \implies \:20 \sqrt{2} cm \:

hence, perimeter of isosceles triangle is 202 cm .

Similar questions