Math, asked by Nivethav, 7 months ago

if the area of arectangular feild is (21a square -7x) and one of its side is7x ,what is its other side​

Answers

Answered by Anonymous
22

Answer:

{ \huge{ \underline{ \red{ \bf{Given}}}}}

{ \to { \sf{Area \: of \: rectangle \:  = 21 {a}^{2}  - 7x}}}

{ \to{ \sf{one \: side \: of \: rectangle \: field = 7x}}}

Find :- Other side

Solution:-

{ \to{ \sf{area \: of \: rectangle \:  = l \times b}}}

{ \to{ \sf{21 {a}^{2}  - 7x = 7x \times b}}}

 { \to{ \sf{ \frac{21 {a }^{2}  - 7x}{7} = xb }}}

{ \to{ \sf{ \frac{7(3 {a}^{2} - x) }{7}  = xb}}}

{ \to{ \sf{ \frac{{ \cancel{7}}(3 {a}^{2} - x) }{{ \cancel{7}}}  = xb}}}

{ \to{ \sf{ \frac{3 {a}^{2}  - x}{x} = b }}}

Therefore breadth of rectangle field is 3a²-x/x

Step-by-step explanation:

Verification:-

{ \to{ \sf{area = l \times b}}}

{ \to{ \sf{21 {a}^{2} - 7x = 7x  \:  \times  \frac{3 {a}^{2}  - x}{x}  }}}

{ \to{ \sf{21 {a}^{2}  - 7x = 7{ \cancel{x}} \:  \times  \frac{3 {a}^{2}  - x}{{ \cancel{x}}} }}}

{ \to{ \sf{21 {a}^{2}  - 7x = 7 \times( 3 {a}^{2}  - x)}}}

{ \to{ \sf{21 {a}^{2} - 7x = 21 {a}^{2}  - 7x }}}

L. H. S = R. H. S

Hence proved ✔

Similar questions