Science, asked by jy687, 8 months ago

If the area of rectangle is 128cm square and length is twice of breadth.Find it's length and breadth​

Answers

Answered by dvenkat27
1

Given,

let length of a rectangle be = 2x

and breadth of a rectangle be = x

area of a rectangle is = 128

l×b=128

2x×x=128

2x^2=128

x^2=64

x=8

therefore the length and breadth of a rectangle are 16cm and 8cm respectively

then, perimeter of the rectangle is =2(l+b)

=2(16+8)

=2(24)

=48cm

therefore perimeter of the rectangle is 48cm

Answered by sethrollins13
75

Given :

  • Area of rectangle is 128cm².
  • Length of the rectangle is twice its breadth.

To Find :

  • Length and Breadth of the rectangle.

Solution :

\longmapsto\tt{Let\:the\:breadth\:be=x}

If length of the rectangle is twice its breadth.So ,

\longmapsto\tt{Length\:of\:rectangle=2x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rectangle=length\times{breadth}}

Putting Values :

\longmapsto\tt{128=2x\times{x}}

\longmapsto\tt{128={2x}^{2}}

\longmapsto\tt{\cancel\dfrac{128}{2}={x}^{2}}

\longmapsto\tt{\sqrt{64}=x}

\longmapsto\tt\bold{x=8}

Value of x is 8...

Therefore :

\longmapsto\tt\bold{Length\:of\:Rectangle=8cm}

\longmapsto\tt{Breadth\:of\:Rectangle=2(8)}

\longmapsto\tt\bold{16cm}

_______________________

VERIFICATION :

\longmapsto\tt{Area\:of\:Rectangle=length\times{breadth}}

\longmapsto\tt{128=8\times{16}}

\longmapsto\tt\bold{128=128}

HENCE VERIFIED

Similar questions