Math, asked by Anonymous, 6 months ago

If the area of the adjacent faces of a cuboid are in ratio 2:3:4 and its volume is  {\sf {9000\: {c.m.}^{3}}} . Find its sides.​

Answers

Answered by SuitableBoy
79

{\huge{\underline{\underline{\rm{Question:-}}}}}

Q) If the Area of the adjacent faces of a Cuboid are in the ratio 2 : 3 : 4 and its volume is 9000 cm³ . Find its sides

 \\

{\huge{\underline{\underline{\rm{Answer\checkmark}}}}}

 \\

Given :

  • Ratio of areas of adjacent faces = 2:3:4
  • Volume = 9000 cm³

 \\

To Find :

  • Length , breadth and height .

 \\

Solution :

  • Let length be l
  • breadth be b
  • Height be h

We have ,

Ratio of areas of adjacent faces = 2 : 3 : 4

 \mapsto \rm \:  bh: lh : lb= 2 : 3 : 4

let the ratios be 2x , 3x and 3x

  • bh = 2x
  • lh = 3x
  • lb = 4x

Multiply this all

 \mapsto \rm \: bh \times lh \times lb = 2x \times 3x \times 4x

 \mapsto \rm \:  {(lbh)}^{2}  = 24 {x}^{3}

As we know ,

 \boxed{ \sf \: volume = lbh = 9000 \:  {cm}^{3} }

put it above .

 \mapsto \rm \:  {9000}^{2}  =  24 {x}^{3}

 \mapsto \rm \:  \cancel{9000} \times 9000 =  \cancel{24} {x}^{3}

 \mapsto \rm \:  {x}^{3}  = 375 \times 9000

 \mapsto \rm \: x =  \sqrt[3]{3375000}

 \mapsto \rm \: x = 150

 \\

Now , finding the sides ...

We have -

  • bh = 2x
  • lh = 3x
  • lb = 4x

So ,

  \sf \:  \frac{ \cancel{b}h}{l \cancel{b}}  =  \frac{2}{4}  \\

 \mapsto \sf \:  \frac{h}{l}  =  \frac{1}{2}  \\

 \mapsto  \boxed{\rm \: l = 2h}

We know that ,

\rm \: lh =3x

 \mapsto \rm \:  \cancel2h \times h = 3 \times  \cancel{150}

 \mapsto \rm \:  {h}^{2}  = 3 \times 75

 \mapsto \rm \: h =  \sqrt{225}

 \mapsto  \pink{\underline{ \boxed{ \rm \: h = 15\: cm}}}

And

 \mapsto \rm \: l = 2h

 \mapsto \rm \: l = 2 \times 15 \: cm

 \mapsto \orange{ \underline{ \boxed{ \rm \: l = 30 \: cm \: }}}

Now ,

 \mapsto \rm \: bh = 2x

 \mapsto \rm \: b \times  \cancel{15 }= 2 \times  \cancel{150}

 \mapsto \purple{ \underline{ \boxed{ \rm \: b = 20 \: cm \: }}}

 \\

_________________________

 \\

So , the sides of the Cuboid would be :

  • Length = 30 cm
  • Breadth = 20 cm
  • Height = 15 cm

 \\

Note : The value of breadth and height can be interchanged .

Answered by ssvinayakenterprises
0

Answer:

well you already got the answer

Similar questions