Math, asked by shaikshaanahmed2006, 27 days ago

if the area of the adjacent faces of a rectangular block are in the ratio 2:3:4 and its volume is 9000 cm^3, find the length of the shortest side.

Answers

Answered by mk28816615
19

Step-by-step explanation:

Let, the edges of the cuboid be a cm, b cm and c cm. The areas of the three adjacent faces are in the ratio 2 : 3 : 4. Thus, length of the shortest edge is 15 cm .

Answered by Anonymous
56

  \star\red {Given:-}

Areas  \:  \: of   \: \: three \:  \:  adjacent  \:  \: faces  \:  \: of  \:  \: a \:  \:  \\  rectangular \:  \:  block  \:  \: are \:  \:  in  \:  \: the  \:  \: ratio  \:  \: 2 : \\  3:4  \:  \: and \:  \:  its \:  \:  volume \:  \:  is  \:  \: 9000  \:  \: cm ^{2} .

Let \:  \:  the \:  \:  dimensions \:  \:  of  \:  \: a  \:  \: rectangular   \:  \:  \\   block \:  \:  be \:  \:  l \:  \: , \:  \:  b \:  \:  and \:  \:  h.  \\  \\   Let \:  \:  these  \:  \: adjacent  \:  \:   faces  \:  \: of \:  \:  a  \:  \: rect -  \\ angular  \:  \: block \:  \:   are \:  \:  x \: , \:  y \: , \: z. \:  \:     \\  \\x  \: : \: y \:  :  \:  \:  z \:  :    \:  \: = \: 2    \:  \: : 3 \: : \: 4  \\  \\ So ,  x   =  lb  = 2k, y = bh  = \:  3k \: ,  \: z \:  = \:  hl \: \\   = 4 \: k  \: and \:   \: volume  \: \:  of  \:  \:  cuboid \:    = V \\  \\  V =  \: lbh

  \pink{On \:  \:  squaring  \:  \: both  \:  \: sides  \: : }

 ↦ \: {v}^{2} \:   = \:  ( \: lbh \: )^{2}  =   {l}^{2}  \: \:   {b}^{2}    \: \: {h}^{2}  \:

↦ \:  {v}^{2} \:   =  \: lb \:  \times  \: bh \:  \times  \: hl\:

 ↦ \: {v}^{2}   \: =  \: x \: y \: z

→ \:  \: ( \: 9000 \: ) \: ^{2} = \:  (2k  \:  \times  \: 3k   \: \times   \: 4k) \:

→ \: 31000000  \: =  \: 24 \: k \:  ^ 3 \:

→k  \: ^ 3  \: =  \: \frac{8100000\:}{ \: 24}

→k  \: ^ 3  \: =  \:  337500

→k  \: ^ 3  \: =  \:   3\sqrt{337500}

 \blue{→k  \:  \: =  \:150}

 \green{Now, } \\  \\ lb = 2k  \\  lb = 2   \: \times  \:  150 = 300  \\  \\ bh = 3k  \\  bh = 3  \:  \times  \: 150 = 450  \\  \\ hl= 4k  \\ hl= 4 x 150 = 600  \\   \\ \\  \:

\blue {Then, } \\  \\ l =  \frac{lbh}{bh}  =  \frac{9000}{450 1 \: }  \\   l = 20 cm \\  b =  \frac{lbh}{bh} \: \:  \\ b= \:  \:   \frac{9000}{ 600} \\  b = 15 cm  \\   h =  \frac{lbh}{bh}   \:   \\h=  \frac{9000}{ 3 \: 00} \: \\  h= 30 cm  \:

 \pink{Hence, \:  the \:  length  \: of  \: the  \: s hortest    \:  edge \:  is  \: 15 cm  \: } \\  \\  \\  \\  \\

 \huge \red {hope \: it \: hleps \: u}

Similar questions